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Abstract

Some of the most powerful language models currently are proprietary systems, accessible
only via (typically restrictive) web or software programming interfaces. This is the Language-
Models-as-a-Service (LMaaS) paradigm. In contrast with scenarios where full model access
is available, as in the case of open-source models, such closed-off language models present
specific challenges for evaluating, benchmarking, and testing them. This paper has two goals:
on the one hand, we delineate how the aforementioned challenges act as impediments to
the accessibility, reproducibility, reliability, and trustworthiness of LMaaS. We systematically
examine the issues that arise from a lack of information about language models for each of
these four aspects. We conduct a detailed analysis of existing solutions, put forth a number
of recommendations, and highlight directions for future advancements. On the other hand, it
serves as a synthesized overview of the licences and capabilities of the most popular LMaaS.
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1. Introduction

The field of natural language processing (NLP) has undergone a profound transformation in
the past few years, with the advent of (Transformer-based) Language Models (LMs) (Vaswani
et al., 2017; Devlin et al., 2019; Radford et al., 2019). Improved access to large models has
been a fundamental facilitator of progress (Wolf et al., 2019), fueled by the scale of data and
computing available to research institutions and companies (Kaplan et al., 2020). In less than
five years, the state-of-the-art models evolved from small architectures that were trainable on
a few GPUs (Peters et al., 2018; Devlin et al., 2019) to very large and complex architectures
that require dedicated data centres and supercomputers (Raffel et al., 2020; Rae et al., 2021)
which are very costly to set up. Commercial incentives have led to the development of large,
high-performance LMs, accessible exclusively as a service for customers that return strings
or tokens in response to a user’s textual input – but for which information on architecture,
implementation, training procedure, or training data is not available, nor is the ability to
inspect or modify its internal states.

This paradigm, known as Language-Models-as-a-Service (LMaaS) (Sun et al., 2022), represents
a licensing model in which LMs are centrally hosted and, typically, provided on a subscrip-
tion or pay-per-use basis. Modern LMaaS provide a unified portal for various services that
had previously been separated; from access to information that was the realm of search en-
gines to problem-solving tools on a large number of domains such as data analysis, image
generation, etc. (Romera-Paredes and Torr, 2015; Brown et al., 2020; Lewis et al., 2020; Ope-
nAI, 2023). These services have grown rapidly and are now adopted extensively by hundreds
of millions of customers. In parallel to improving models’ capabilities, the risk of malicious
usage is also increasing, e.g., regarding the weaponization of biotechnologies and mass surveil-
lance (Hendrycks et al., 2023). Other recent works highlight the risks of LMaaS and LMs that
are not aligned with human values (Bommasani et al., 2021). This has resulted in an explosion
of interest in understanding values and biases encoded by these models, intending to align
the former to those of humans and mitigate the latter (Ganguli et al., 2022; Liu et al., 2022;
Santurkar et al., 2023).

However, access restrictions inherent to LMaaS, combined with their black-box nature, are
at odds with the need of the public and the research community to understand, trust, and
control them better, as illustrated in Figure 1. This causes a significant problem at the core of
artificial intelligence: the most powerful and economically impactful, but at the same time most
risky, models are also the most difficult to analyze. LMs are released with various licences,
from open-source to more restrictive cases such as "open-weights".1 Yet, once obtained, LMs are
inspectable, and the end-user can flexibly control their behaviour. On the other hand, LMaaS
are accompanied by commercial licences, are mostly closed-source and partially controllable
by the end-user, and are often accessible via paid subscriptions. Thousands of applications are
currently powered by LMaaS,2 whose internal pipelines depend on the output (or the internal
representations) of generative models whose internal mechanisms are kept undisclosed. In
this sense, trusting LMaaS is a necessary, yet not sufficient, condition to trust the products they
boost, both for the end-user and the companies that adopt them. While some of these problems
are orthogonal to the existing concerns with LMs, in general, the particularities of LMaaS
exacerbate these issues or make their assessment or mitigation significantly more difficult. We
group the difficulties arising from such paradigm along four categories, namely accessibility,
reproducibility, reliability, and trustworthiness.

• Accessibility - Section 3.1. LMaaS are frequently accessible through application pro-
gramming interfaces (API) or web interfaces, with free, pay-per-use, or subscription-
based payment modalities. To use them, one must accept and subscribe to commercial

1. https://github.com/Open-Weights/Definition, accessed on 19/06/2024.
2. https://openai.com/index/gpt-3-apps/, accessed on 29/12/2023.
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Figure 1: Illustration of the difference between interacting with LMaaS and user-controlled
LMs. Most LMs that are offered in full provide access to a model’s internals (e.g., its
weights) and list details on the training procedure and instructions on executing the
models locally. In most cases, this allows users to inspect the inner workings of these
models, and run (or change) them on the hardware of their choice. On the other
hand, LMaaS are accessible through a web interface or an API only (for illustrative
purposes, in the diagram above, the API calls resemble those of OpenAI). They are
powered by LMs that typically run on computational infrastructures controlled by
third parties, and little information about the model is exposed to the user, beyond
general reports or model cards (Wolf et al., 2019).

licenses that grant companies the right to collect and use prompts to improve their model.
LMs, despite some notable exceptions that we touch on in the first Section of this paper,
are largely accessible and often come with permissive licenses. Furthermore, LMaaS ac-
cess costs are often not in harmony with the socioeconomic factors of prospective users,
potentially resulting in disadvantages in certain demographic layers.

• Reproducibility - Section 3.2. LMaaS are deployed and updated in a continuous de-
livery/deployment regime, with legacy models frequently replaced by newer ones and
depreciated altogether, possibly with little prior notice. This undermines reproducibility
as one cannot evaluate withdrawn models or compare different versions. Reproducibility
is further limited by the intrinsic non-determinism of LMaaS and the limited configura-
tion options the service providers offer.

• Reliability - Section 3.3. Benchmarking the LMs’ and LMaaS’ performance on various
tasks and problems is how we ensure models are reliable. Benchmarking any LM incurs
significant computational and human costs and is non-trivial to carry out, but for LMaaS,
compared to user-controlled LMs, additional challenges occur, such as dataset and user
contamination (i.e., it is hard to devise samples already not digested by the model and

1499



La Malfa et al.

out-of-distribution test sets) and evaluating emergence (i.e., attributing the origin of certain
allegedly emergent abilities of an LMs and LMaaS).

• Trustworthiness - Section 3.4. Models whose decision process is inspectable and in-
terpretable in terms of elementary input-output operations are often denoted as self-
explaining. LMaaS do not belong to that class but are rather explanatory techniques, with
their explanations coming from conditioned prompts, which are handled the same way
as any other query. In this sense, any explainability technique that requires access to a
model’s internal does not apply to them.

These problem categories show that LMaaS require careful treatment due to their Software-
as-a-Service nature (SaaS), an appropriate regulatory framework, and policies implemented by
the companies that provide access to such services. We conclude the paper with Section 4,
which outlines some strategies to mitigate the most urgent issues raised by LMaaS, which we
hope will help the research community and companies to make Language-Models-as-a-Service
more accessible, reproducible, reliable, and trustworthy. We emphasise the complementary
role companies and the research community play to ensure the above values are instilled and
preserved.

2. Related Work

Several factors have underlined the success of LMs and the consequent commercial interest and
advent of the LMaaS paradigm. In this section, we provide a brief review of these developments.

Language Models. Many computational models and approaches towards natural language
understanding have been developed over the last several decades (Goldberg, 2016). Until re-
cently, though, their relatively poor performance limited their commercial viability. However,
the introduction of the Transformer architecture (Vaswani et al., 2017), inspired by previous
works on attention mechanisms (Bahdanau et al., 2015; Niu et al., 2021), led to more efficient
training of deep-learning-based LMs, which could leverage large scale text data for train-
ing. Consequently, the performance of Transformer-based LMs quickly surpassed all previous
methods (Devlin et al., 2019). Large Transformer-based models, of which LMs are the most
successful implementation, also exhibit zero- and few-shot behaviours, i.e., the ability to solve
novel tasks with zero or few examples provided as part of the input prompt (Chang et al., 2008;
Brown et al., 2020). These behaviours scale with the size of the models (Kaplan et al., 2020),
which led to the development of even larger models. This scaling was also supported by the
collection of massive training datasets (Shanahan, 2022; Zhao et al., 2023), the development of
novel training and fine-tuning techniques (Houlsby et al., 2019; Hu et al., 2021; Bai et al., 2022),
and improvements in computing hardware.

Parallel to that, the research community has focused on evaluating LMs and their zero- and
few-shot behavior (Xian et al., 2018; Chang et al., 2023) as well their capability (and limitations)
to solve tasks that require compositional reasoning (Dziri et al., 2023; McCoy et al., 2023b). For
example, recent works have proposed techniques to test the capabilities on unseen data points,
like suites for dynamic benchmarks, behavioural testing, and out-of-domain analysis (Ribeiro
et al., 2020; Kiela et al., 2021; Zhou et al., 2022). Despite their impressive performances, state-of-
the-art LMs still struggle to solve the most challenging cases of low-order tasks such as sentiment
analysis (Barnes et al., 2019; Barnes, 2021; Malfa and Kwiatkowska, 2022) or math (Frieder et al.,
2023). LMs have also been shown to lack robustness: they may respond incorrectly to minor
variations of inputs that a model has correctly classified (Sinha et al., 2021; Wang et al., 2023a).

Language-Models-as-a-Service. The first work we are aware of to use the term Language-
Model-as-a-Service is by Zhao et al. (2021), despite many publications (Deng et al., 2022; Ding
et al., 2022; Dong et al., 2022) citing the later work by Sun et al. (2022). LMaaS came to
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prominence with the advent of ChatGPT (OpenAI, 2023a) and other products developed by
Google and Microsoft (Thoppilan et al., 2022),3 though breakthroughs and key observations
that contributed to their success date back to LMs such as GPT-3 (Brown et al., 2020). Recently,
a lot of research has focused on evaluating the performance of LMaaS on consolidated NLP
datasets and benchmarks (Liang et al., 2022; Chang et al., 2023; Laskar et al., 2023), as well as on
specialized tasks such as mathematical and spatial reasoning, symbols manipulation, and code
generation (Chen et al., 2019; Kojima et al., 2022; Cohn and Hernandez-Orallo, 2023; Frieder
et al., 2023; Ray, 2023; Rozière et al., 2023; Shen et al., 2023). These evaluations continually evolve
and improve, representing a crucial component in advancing the state-of-the-art in NLP (Wang
et al., 2023a; Zhao et al., 2023). LMaaS also achieve super-human performance on a variety of
tasks (Bubeck et al., 2023), yet fail on edge-cases that humans correctly classify (Berglund et al.,
2023; Hao et al., 2023; Kocoń et al., 2023), exhibit implicit linguistic biases (Ahia et al., 2023;
Bang et al., 2023; Petrov et al., 2023b) or are brittle to adversarial prompts (Kocoń et al., 2023;
Shen et al., 2023; Schlarmann and Hein, 2023; Zou et al., 2023). They also do not model uncer-
tainty or treat ambiguity properly (Liu et al., 2023a). We note that since the best-performing
language models are the ones available solely as-a-Service (OpenAI, 2023), many investigations
concerning advanced capabilities of LMs cannot be decoupled from the as-a-Service platform
via which the LMs are offered (Ray, 2023; Shen et al., 2023).

3. The LMaaS Paradigm

We provide a high-level definition of LMs, which we then restrict to that of LMaaS. We then
discuss how the LMaaS differs from LMs in four crucial respects, namely accessibility, repro-
ducibility, comparability, and trustworthiness.

A language model defines a probability distribution over a finite string of tokens (Du et al.,
2022) and is trained to predict a symbol or token (an instance of a sequence of characters)
from a finite vocabulary. Instead of computing the token with the highest probability over the
next in a sequence, most LMs introduce diversity by employing non-deterministic sampling
strategies (Holtzman et al., 2020). While more capable than the deterministic counterparts, the
behaviour of non-deterministic models varies according to parameters such as the temperature
or the seed. The former is expected to make the generative process deterministic. At the same
time, with the latter, we refer to a setting where all the sources of uncertainty, including the
generative process, are deterministic and thus reproducible.

LMs are in-context learners (Brown et al., 2020; Dong et al., 2022), which refers to their ability
to solve a task without changing model weights, thereby being an optimal learning approach
for models provided as-a-Service through APIs or a web interface, as illustrated in Figure 1.
In their simplest form, LMaaS return utterances in response to a user’s prompt, both provided
textually through the mentioned means of interactions. This form of interaction removes many
of the possibilities of changing the models’ behaviour, although commercial offerings allow
some level of fine-tuning models (OpenAI, 2023b).

3.1 Accessibility

Licenses are (legal) instruments that accompany most LMs and LMaaS and govern the use and
distribution of software. They define how the software can be used, modified, and distributed
and outline the rights and responsibilities of the user and the software provider. Open-source
and free software are widely spread philosophies that promote transparency, customizability,
and community-driven development, which can enhance or limit the accessibility of software
products. The landscape of LMs’ licenses is varied, as discussed in the next section and shown
in Figure 2; on the other hand, for LMaaS, companies mostly employ commercial licenses due

3. https://www.microsoft.com/bing, accessed on 26/09/2023.
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Figure 2: LMs, sourced from the https://huggingface.co/models library, grouped by how
they are provided regarding software licences. Half of the LMs on Huggingface are
provided with an Apache-2.0 licence, followed by the MIT licence and the OpenRAIL
licence, which is a new licence specifically devised for machine-learning applications.
Last access 01/08/2023.

to their nature as-a-Service tools. Further, we illustrate how LMaaS, delivered as pay-per-use
services, intensify disparities between high-resource (e.g., English) and low-resource languages
on components such as the tokenization process before a model is prompted.

LMaaS and LMs licenses. While some LMs require massive computational capabilities to
be instantiated locally (Rae et al., 2021; Chowdhery et al., 2022), most are freely available for
download, inspection, and execution on middle- to low-end machines: an instance of Alpaca-
7B (Taori et al., 2023) or LLaMA-7B (Touvron et al., 2023a,b) can be used to do inference
in full-precision, on a single GPU with 28GB of RAM.4 Furthermore, approaches such as
Petal (Borzunov et al., 2022) allow users to access and fine-tune distributed LMs such as
LLaMA and Falcon, leveraging a peer-to-peer network where one can contribute by sharing
their computational power. LMs licences come in different shapes and forms, as reported in
Figure 2. Most LMs come with an MIT or an Apache license, which allows users to use, copy,
modify, distribute and sell copies of the software. We recall that the MIT license does not
require the source code to be available when redistributing the software unless the derived
code comes in turn with an MIT license. In contrast, Apache licenses must include a copy of
the license and a list of any modifications made to the original software, whether the derived
product is released with the source code or in binary form. Popular LMs that are licensed with
an MIT or an Apache license are GPT-2 (Radford et al., 2019) and BERT (Devlin et al., 2019),
respectively.

The (Open)RAIL family of licences5 are a relatively recent licensing method developed to
account for cases specific to AI-powered software. They allow free access and re-distribution
of its licensed material or derivatives, as long as they credit OpenRAIL and license their new
creations under identical terms. On the other hand, OpenRAIL licences specify use-based
restrictions clauses to account for potential social costs stemming from harmful uses of openly
licensed LMs. BLOOM is a popular example of an OpenRAIL licensed LM (Scao et al., 2022).
Taking a broader perspective, even though LMs are released through popular libraries that
allow users to share machine learning models, such as Huggingface (Wolf et al., 2019) or
AllenNLP (Gardner et al., 2018), not all of them fall within the definition of open source or free
software (Stallman, 2010, 2022). For example, models such as LLaMA are "available-weights",

4. https://finbarr.ca/how-is-llama-cpp-possible/, accessed on 26/09/2023.
5. https://www.licenses.ai/ai-licenses
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in the sense that one requests access to the model and is then granted access to the weights,6
which come with custom licenses that limit their usability. The LLaMA license, in particular,
forbids its users to use its output to train other models.7

LMaaS, and in general Software-as-a-Service (SaaS), move the computation burden to the
provider’s servers though at the cost of the users no longer having direct control over the
software. With capabilities that often largely surpass that of LMs (Liu et al., 2023b; OpenAI,
2023), LMaaS have become a tool used daily by users and researchers. As previously mentioned,
free software is software users can run, copy, distribute, study, change, and improve (Stallman,
2010) with some reasonable limitations, e.g., responsible use for OpenRAIL. LMaaS violate
some or all of these principles, depending on who is offering the service, as most come with
commercial licences (Liesenfeld et al., 2023), and cannot be run locally. The options are either
paying an API provider or using a freemium service, i.e., free for basic usage with the possibility
to upgrade it with a paid subscription, offered through a web interface.8 For models such as
Google Bard (Thoppilan et al., 2022) and Microsoft Copilot in Bing, prompting through an API
is not supported natively at the time of writing (see Table 1), yet workarounds exist: despite
wide adoption, such solutions create problems regarding the liability of the software and the
reliability of the results, as they might break the commercial licence under which the end user is
expected to use the service. Consequently, copying, distributing, fully studying, and changing
most commercial LMaaS is impossible.

Aligning the principles of free software with the procedures and practices of LMaaS in-
volves, at minimum, releasing their source code and providing training instructions. A few
institutions and companies have released LMs, such as Alpaca and BLOOM, that implement
these practices (Scao et al., 2022; Taori et al., 2023), and part of the research community has com-
mitted to developing LMs one can download and use locally, with techniques such as LoRA
and its variants (Hu et al., 2021; Dettmers et al., 2023), that allow fine-tuning and, to some
extent, training models that otherwise require access to large scale computational facilities.

On the other hand, some others have faced criticisms, as in the previously discussed case of
LLaMA.9 However, in commercial products released as-a-Service, licences are more restrictive,
as companies prefer to avoid open software methodologies (Liesenfeld et al., 2023) to protect, via
security through obscurity their intellectual property and the derived competitive advantages.
With the computational power distributed unevenly and concentrated in a tiny number of
companies, those with a technological, yet not computational, advantage face a dilemma. While
open-sourcing their LMaaS would benefit them in terms of market exposure and contribution
to their codebase by the community, releasing the code that powers a model may rapidly burn
their competitive advantage in favour of players with higher computational resources (Henkel,
2009; Heron et al., 2013; Tkacz, 2020).

Access barriers to LMaaS. AI-powered solutions such as LMaaS will drive significant eco-
nomic growth in the forthcoming years. For instance, the UK government has projected that
AI could contribute to a 10% increase in GDP.10 Given the substantial economic implications,
ensuring widespread access to these models and services becomes paramount. Nevertheless,
the prevalent practice of uniform pricing poses a barrier, particularly limiting accessibility for
individuals and organizations in underdeveloped and developing areas of the world. Con-
sequently, the paid models offered by LLMaaS may result in considerable disparities in the

6. https://www.alessiofanelli.com/blog/llama2-isnt-open-source, accessed on 10/11/2023.
7. https://ai.meta.com/resources/models-and-libraries/llama-downloads/ section v., accessed on

10/11/2023.
8. Without even counting that different models may serve different users, in the same way as LMaaS served

through the API potentially differs from that hosted through the web interface
9. https://opensourceconnections.com/blog/2023/07/19/is-llama-2-open-source-no-and-perhaps-we-
need-a-new-definition-of-open/, accessed on 15/10/2023.

10. https://assets.publishing.service.gov.uk/media/5ff3bc6e8fa8f53b76ccee23/AI_Council_AI_
Roadmap.pdf, accessed on 10/11/2023.
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economic impacts of this technology worldwide (Zarifhonarvar, 2023). Moreover, due to com-
mercial interests, developers of LMaaS tend to focus on affluent markets. This bias is evident
in the performance disparities for less commonly used languages, as noted in various studies
on tokenization (Ahia et al., 2023). Additionally, the pricing model, which charges per token
or Unicode character, disproportionately affects certain languages (Petrov et al., 2023b). For
instance, some languages incur costs up to fifteen times higher than English. Consequently,
the exclusive and paid structure of LMaaS contradicts the assertion that language models can
promote global welfare and reduce social inequalities. On the contrary, we believe they are
more likely to aggravate these disparities.

A starting point to mitigate these issues is thus analyzing the impact of LMaaS and, more
generally, pay-per-use artificial intelligence services as a standalone, pervasive, and disruptive
technology. For works highlighting unfair premiums paid by low-represented groups, e.g.,
non-English speakers, we argue that the pricing would be better informed by taking into
account the different groups’ geographical and economic factors (for example, using informed
indicators such as the monetary measure of the market value). Solving disparities in access to
disruptive solutions such as LMaaS goes well beyond addressing their technological problems
and requires implementing ad-hoc policies and governance tools.

3.2 Reproducibility

Reproducibility is a fundamental concept in science, serving as a cornerstone for establishing
the reliability of findings. In machine learning, reproducibility refers to achieving the same
results using the same dataset and algorithm. LMaaS hardly meet these conditions.

Their probabilistic nature, exacerbated by the access policies as-a-Service, the practice of
deprecating or changing models seamlessly, without public notifications, and their intrinsic
non-determinism, affect such models even when all the sources of randomness available to
the end-user are fixed. Before delving into LMaaS’s reproducibility problems, we discuss their
uniqueness in the panorama of ML as-a-Service products. While one may argue most problems
that affect LMaaS are shared by any ML as-a-Service tool, e.g., machine translation, object
recognition, diffusion-based image generation, etc., unprecedented attention has been given
by the research community to LMaaS-related issues. More than 15,000 articles were published
in 2023 that include terms such as ‘GPT-4’ or ‘GPT-3-5’,11 and most of top machine learning
venues now dedicate tracks to ‘generative models’ (thus including LMs and LMaaS). We thus
emphasise the necessity of developing frameworks and tools to analyse them. Reproducibility
and determinism are two cornerstones of such an approach.

Reproducible experiments in light of LMaaS depreciation. In software development, contin-
uous delivery is an approach where code changes are made to an already deployed application
and released into the production environment. For SaaS solutions, this means that for a user
who interacts with an LMaaS through a web browser GUI, a new version of a product can
overwrite the preceding one seamlessly (Hacker News, 2023a,b; OpenAI Community, 2023).
LMaaS, such as GPT-3.5, GPT-4, Bard, and Microsoft Copilot in Bing, are accessible via a GUI
or APIs , though few details are publicly available on the exact deployment strategy. On one
side, continuous delivery allows companies to deploy better models and rapidly patch bugs
and newly discovered vulnerabilities; on the other, it harms the reproducibility of empirical
analyses conducted on such models (Chen et al., 2023). For API access, one would expect clear
documentation of model changes, but even in this case, reports of sudden changes in behaviour
exist (Gao, 2023)

When a company deprecates a model, assessing and thus trusting the validity of an experi-
ment depends only on the historical data and the consensus reached by the research community

11. Source: Google Scholar; Query: "GPT-4" | "GPT-3.5"; accessed on 30/12/2023: https://scholar.google.
com/scholar?q=%22GPT-4%22+%7C+%22GPT-3.5%22&hl=en&as_sdt=0%2C5&as_ylo=&as_yhi=2023
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Figure 3: Setting the temperature T to zero makes (typically) LMaaS deterministic, with the
probability of sampling the next word that concentrates on a single word. On the
other hand, for T > 0, LMaaS become progressively more creative, but makes the
distribution over which they sample progressively more flat.

on the reliability of the benchmarking technique. Assume that one measured, between April
and May 2023, the performance of GPT-3.5 with the methodology described in (Liang et al.,
2022). On the 11th of May 2023, OpenAI removed GPT-3.5-legacy from the list of available mod-
els and is adopting a similar policy for newer models.12 Reproducing experiments for those
models has become impossible; thus, we can only trust the correctness of the benchmarking
techniques. On the contrary, most LMs that are not offered under the LMaaS paradigm, are
stored by third-party services and made available for download with permissive licences, as
discussed previously in this paper.

To check if an LMaaS has been updated, one can collect some answers in response to a
set of prompts, store their hash, and compare it over time to prove that a model replacement
has occurred. Unfortunately, this solution is not sound: two different LMaaS can output
the same answer or differ not because one replaced the other but due to their intrinsic non-
determinism (see next paragraph). Another viable solution would be to require companies to
support access to legacy models for an extended period: this could happen, if not immediately
after being withdrawn, after a period that would not preclude users from adopting newer
versions. However, this is not without its downsides too: as newer versions patch safety and
exploitation vulnerabilities (e.g., "jailbreaks" (Chao et al., 2023; Liu et al., 2023c; Yao et al.,
2023a)), maintaining an "unpatched" version can thus be a method for malicious actors to
continue exploiting the system.

These aspects are highly problematic, particularly when LMaaS are used as an intermediate
node in a software pipeline for a downstream consumer software offering that builds on
LMaaS: as LMaaS change, the quality of the downstream service will also change. One way
to address these issues is to allow only access to vetted individuals and organizations, though
that would limit the audit of the models. Alternatively, providers can supply an interface
for researchers to register benchmarks that re-evaluate a model at every update, like public
continuous integration testing. Since API change is not documented well presently (Gao, 2023),
the most viable (but costly) alternative is running permanent regression tests (Chen et al., 2023)
to monitor and statistically track model performance on metrics relevant to the downstream
service, akin to the daily “GPT-4 unicorn” (Adam, 2023).

The myth of determinism and the hardness of prompting. Another concern is the inherent
non-determinism of most models accessible as-a-Service. This problem is not limited to LMaaS
but extends to many generative AI techniques deployed and made available as-a-Service, such
as diffusion-based image generators (Rombach et al., 2021). With LMaaS, the same prompt

12. https://openai.com/blog/gpt-4-api-general-availability, accessed on 26/09/2023.
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possibly returns more than one answer, aggravating reproducibility. Models such as GPT-3.5
and GPT-4, when accessed via API or via the web-interface provided by cloud services such
as Microsoft Azure, allow adjusting the diversity of the completion generated over a user’s
prompt by tuning the value of parameters such as the temperature, as illustrated in Figure 3.
In the case of GPT-3.5, the model should behave deterministically by setting the temperature
to zero. Nevertheless, there have been reports that GPT-3.5 and GPT-4 are non-deterministic
even for temperature zero (Chann, 2023; Ouyang et al., 2023).13 For values greater than zero,
an LMaaS samples the outputs according to a probability distribution, therefore, the sample
from the distribution can be different at each run. The number of utterances a deterministic
LMaaS can output is a (strict) subset of those a non-deterministic LMaaS can generate: in this
sense, a model gains diversity with non-determinism but could diminish the consistency of
so-generated answers. Summarizing, while undoubtedly helpful, controlling

Only fixing all the randomness sources (informally, their seed) allows one to control, re-
produce, and trust experiments conducted with that model. Thus, precluding access to their
source code erodes trust in the end-user and possibly weakens our control of the LMaaS. An-
other related risk that is debated in literature is whether a fully deterministic model that would
expose a company to the risk of seeing its models mimicked by others. While some research
papers show how to train a competitive replica of an LMaaS with access solely to the output of
another model or its embedded representations (Mukherjee et al., 2023; Peng et al., 2023), others
argue that "imitation" models only apparently close the gap with powerful LMaaS (Gudibande
et al., 2023), leaving this debate unsolved for now.

Another issue that affects transparency is that different models offer different access inter-
faces (e.g., via web GUI or APIs), as reported in Table 1. The case of GPT-3.5 & 4 is emblematic:
while the API access allows setting the temperature and other parameters, the corresponding
web interface does not admit such options. Any LMaaS we want to evaluate rigorously should
provide parameters to make such analysis deterministically reproducible. When that is not pos-
sible, benchmarking techniques need to take non-determinism into account, e.g., via sampling
strategies that explore a model output’s landscape robustly to account for non-deterministic
behaviours. While this latter approach would not make experiments fully reproducible, it
would at least amount to experiments that can be trusted.

3.3 Reliability

Reliability in machine learning is pivotal, signifying the consistency and dependability of a
learning model’s results. This concept is fundamental as it underpins the extent to which one
can place confidence in the model’s predictions or decisions within real-world scenarios. In the
context of LMs and LMaaS, reliability encompasses models whose performance is quantifiable
through metrics. These metrics should reflect the model’s proficiency in accomplishing tasks
that transcend mere memorization of training data and reliance on superficial patterns. This
section delves into pertinent issues for benchmarking LMs, with the LMaaS framework inten-
sifying these assessment challenges. A primary concern is dataset contamination. This occurs
when the training data contains inputs and corresponding labels that are similar to, or exact
replicas of, those utilized in the testbed. Another type of contamination, which we name user
contamination, occurs when companies collect prompts to train and fine-tune their models and
is specific to the LMaaS paradigm. Furthermore, this section explores the "emergent behaviour"
concept in LMaaS. Emergence refers to the ability of LMaaS to tackle tasks not encountered
during training. Identifying such emergent behaviours necessitates a preliminary determina-
tion of whether these tasks represent novel challenges. Lastly, we provide an overview of an
ongoing debate in benchmarking practices: on the one hand, one can conduct comprehensive

13. https://152334h.github.io/blog/non-determinism-in-gpt-4/, accessed on 24/08/2023.
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evaluations across multiple datasets and metrics; on the other, one can employ techniques that
assess and aggregate the meta-capabilities of such models in addressing analogous tasks.

Dataset contamination and user contamination. LMs are pre-trained on massive datasets
that often consist of billions, if not trillions, of tokens, usually scraped as unstructured text
from the web (Touvron et al., 2023b). Such an approach contrasts with the broader paradigm of
(self)-supervised training, where models are trained and instructed on curated input/output
samples and tested on unseen test data. The need for massive datasets induces scarcity of test
beds (Van, 2023), as popular ones might be available online and consumed during training
due to poor scraping and data collection policies. This is the issue of dataset contamination.
In this setting, performance evaluation becomes non-trivial, as it must be conducted on data
not used at training time. Memorization, defined as the tendency of an LM to output entire
sequences seen at training time, further invalidates benchmarking (Ippolito et al., 2022) while
also being an issue from the point of privacy, by revealing personal data contained in the
training dataset (Carlini et al., 2022, 2021). Furthermore, models such as ChatGPT and Bard
can develop answers that, while seeming correct at first glance, contain inaccurate, false, or not
made-up information (Alkaissi and McFarlane, 2023; Zhang et al., 2023a). This phenomenon
is endemic in almost all the LMaaS and most LMs (Maynez et al., 2020a), and companies are
providing their services by mentioning such issues in their licences, as reported in Table 1.

Another related issue is that of user contamination, that arises when LMaaS, prone to mem-
orisation (Biderman et al., 2023a,b), and are further trained on the user’s inputs—a right which
commercial licences retain, as illustrated in Table 1. Dataset contamination can be induced by
user contamination: a model that does not (yet) suffer from dataset contamination can be prompted
with a novel test bed (as is often the case during test bed creation); this test bed, being digested
by the LMaaS, will then, via user contamination, be invalidated for use in ulterior benchmarks
on that particular LMaaS. While some LMaaS deliver the option to opt-out of the mechanism
of continual data collection, such services are not a standard practice and come with additional
premium costs for the end user.

On tasks that are challenging for humans (the so-called high-order tasks, which stand
in contrast to low-order tasks such as sentiment analysis), there is empirical evidence that
LMaaS exhibit impressive performance (Liang et al., 2022; Wang et al., 2023b), and perform
expertly on many tests designed to be challenging for humans (Zhang et al., 2023b). While
recent developments in deep learning have significantly augmented the capabilities of LMs
and LMaaS in manipulating symbols, the phenomenon of dataset contamination might lead to
overestimating their actual performance.

An illustrative case is that of the work by Zhang et al. (2023b), which suggests that GPT-3.5
and GPT-4 ace entry exams at MIT. The article, subsequently withdrawn from arXiv,14 raises
concerns related to dataset contamination (among a number of other points of concern): a meta-
analysis conducted on the paper suggests that results may have been contaminated (Chowdhuri
et al., 2023). Issues are not limited to the case mentioned above as other researchers raised the
issue of dataset contamination explicitly for models such as GPT-3.5 and GPT-4 (Aiyappa et al.,
2023): well-established benchmarks have their test set, alongside the labels, available on sharing
platforms such as GitHub (Jacovi et al., 2023), which raises the likelihood of them being included
in the model’s training data.

The effort to detect and remove datasets dates back to earlier LMs such as GPT-2 (Brown
et al., 2020; Carlini et al., 2022; McCoy et al., 2023a). A proposed solution is to extract, from the
training corpora or via testing a model’s output, all the n-grams of a leaked test bed (Brown
et al., 2020), though more refined procedures exist (McCoy et al., 2023a). Nevertheless, such
approaches are computationally expensive and not sound: an unsuccessful result does not
prove that a model has not digested (a slight variation of) it.

14. https://arxiv.org/abs/2306.08997, accessed on 19/08/2023.
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With classical LMs, one can detect and mitigate dataset contamination by choosing unfamiliar
benchmarks to assess model reliability. If one does not trust a pre-trained model, it is possible
(with some effort) to retrain it locally. One recent proposal to mitigate dataset contamination is
to stop uploading test data in plain text to the internet (Jacovi et al., 2023). This, however, is not
sufficient. Models equipped with tools to browse the internet and run code (such as the GPT-4
plug-ins) could decompress the test data in plain text in their context, which can then be used
for training future versions of the models. Furthermore, the proposal by Jacovi et al. (2023)
relies on an honour system: if one inadvertently exposes a test set to a model, then one should
disclose it. However, knowledge of the practice and compliance would be hard to enforce.

Similarly, evaluating the LMaaS can leak the test samples to future iterations of its training
if the model is trained on user inputs, as evidenced by user contamination. A viable approach
involves the deployment of models which abstain from gathering data via prompts and are
rigorously trained on datasets that are open to scrutiny.

For both dataset contamination and user contamination, it is also insufficient that the exact
test set is not in the training data. One should also ensure that the same information is not in
the training data. For example, even if a specific test set on solving addition problems is not
ingested, one still needs to ensure that none of the individual problems have been independently
developed, released online, and ingested in the training dataset. This is especially important
for simple tasks such as summing double-digit numbers, of which hundreds of exercise sheets
can be found online or generated with minimal effort.

Therefore, guaranteeing that no contamination occurs is not viable. Data handcrafted to
test the model’s capabilities once and then discarded, namely one-shot data, are practically
impossible to employ, as this requires human experts or specialized algorithms. Generating
high-quality data with a high degree of linguistic variability is, in fact, an open problem in
NLP and computational linguistics. While LMs and LMaaS have a fairly highly developed
facility to generate such data (Eldan and Li, 2023; Møller et al., 2023), they do not solve the
problem (Dwivedi et al., 2023): managing the generative process inherent in LMs and LMaaS
is linguistically challenging. There exists a substantial risk associated with evaluating the
performance based on datasets the model may already classify with considerable accuracy,
being that data is generated with high confidence by the model itself. Such a process also
burdens the research community with the need to develop new datasets continuously and
benchmarks, which are then immediately ingested by LMaaS providers, raising ethical concerns
about the labour involved. Therefore, ensuring that the training set does not independently
have the same data is necessary.

We, therefore, believe that the dataset contamination and user contamination problems cannot
be solved without the active cooperation of the model developers. However, a few interesting
agnostic approaches that estimate the probability of a sample to be part of the training data,
which is assumed to be inaccessible as in the case of LMaaS, are emerging, see, e.g., the research
by Shi et al. (2023).

In addition to such approaches, we propose investigating the option of developing a registry
for models and datasets. A researcher could check which test samples are present in the
training dataset of a given model without accessing the complete training dataset directly.
Then, they could omit these samples from their evaluation. For small variations of an already
digested input, a solution to speed up the search of similar sentences in a model training data
can employ vector databases, which allow computing similarity between inputs that slightly
vary (Han et al., 2023; Pan et al., 2023). Such an approach also addresses the dual problem:
that of a conscientious model developer wanting to avoid the test sets of benchmarks and
evaluations, which can be difficult when users might be inadvertently exposing them to the
model. A model developer can check that their training dataset does not contain test sets from
the registry. Furthermore, developers can dynamically check the user inputs and omit data
samples that have such test samples from future training.
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Company Model Opt-out Train Fine-tune API Accuracy
Disclaimer

AI2Lab Jurassic-1/2 × ✓ ✓ ✓ ✓
Anthropic Claude 1/2/3 ✓ ✓ ✓ ✓ ✓
Cohere Command ✓ ✓ ✓ ✓ ✓

Google PaLM ✓ ✓ ✓ ✓ ✓
Bard (Powered by PaLM) ✓ ✓ ✓ ✓† ✓

Inflection Pi × ✓ ✓ × ✓
Microsoft Microsoft Copilot in Bing × ✓ × × ✓

OpenAI GPT-3.5/4/4o API ✓ ✓ ✓
✓ ✓GPT-3.5/4/4o web ✓‡ ✓ ✓∔

Table 1: An analysis of how companies expose their LMaaS to users. Opt-out refers to the
possibility of rejecting data collection while still accessing the models fully. Symbols
✓ and × indicate whether APIs and opt-out are available, and prompts are explicitly
collected for fine-tuning the current LMaaS or training a new model (or product). The
Accuracy Disclaimer means the relevant company does not provide any warranty as to
the accuracy of the model’s output. Relevant URLs to licences and access are reported
in Appendix A. The Table is illustrative and thus not exhaustive .
†API access is available in beta mode.
‡Opt-out is the default for APIs since March 1st, 2023, while opt-in is the default for the web
interface.
∔Fine-tuning on the web-interface is not as flexible as that provided by the API.

Evaluating emergence. There have been high-profile claims that some of the most advanced
LMaaS exhibit impressive emergent capabilities (Bubeck et al., 2023; Huang et al., 2023a; Singhal
et al., 2023), i.e., capabilities not explicitly programmed or anticipated during their development
that manifest when a model reaches a certain scale or complexity. In practice, emergent abilities
are behaviours that cannot be directly generalized from the training data (Wei et al., 2022a),
and arise when models are scaled up in size and complexity (Biderman et al., 2023b). For
example, if a model has only seen sentiment analysis data during training, we consider its
ability to solve math problems as emergent. At the same time, despite recent works showing
how such properties occur in LMs (Lu et al., 2023), there is reason to doubt whether these are
indeed emergent abilities for LMaaS, as one cannot access the training data. Hence, one cannot
evaluate the similarity of the supposed emergent ability to the abilities encoded in the training
data.

Evaluating whether LMaaS have emergent abilities is even more difficult than measuring
their performance on a benchmark. While the previous section outlined ways to check whether
an exact replica of the test data is contained in the training dataset, the emergence case requires
evaluating whether data for similar tasks we want to test for are present in the training data.
While a dataset and benchmark registry can be endowed with a notion of similarity measure,
finding similar rather than exact data is computationally challenging, when not impossible
(establishing the semantic equivalence between two strings is undecidable). Therefore, for
the immediate future, claims about the emergent abilities of LMaaS will likely remain highly
questionable and, for LMaaS, not actionable as there is no way to access the models we want
to assess (while similar tools have already been developed for standard LMs (Biderman et al.,
2023b)).

We end with a note of caution: the existence of emergent abilities (which entail the challenges
of testing them on LMaaS) is not definitively established, and in some cases, researchers discov-
ered tasks where performances are negatively correlated with the size of the model (McKenzie
et al., 2023) and positively correlated with the probability of a similar prompt to be present
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in the training data (McCoy et al., 2023b). There have also been theoretical results showing
that obtaining novel behaviours with prompting is challenging and that a model is good at a
task indicates that it has likely seen similar or related tasks during pre-training (Petrov et al.,
2023a). What appear to be emergent abilities may be artefacts of poorly chosen evaluation
metrics (Schaeffer et al., 2023a). This fact is exacerbated by the startling observation that an
increase in performance that comes from Chain-of-Thought (CoT) prompting is still observable
if the prompt has logical errors (Schaeffer et al., 2023b). Nonetheless, models appear to be more
than merely “stochastic parrots”, as shown via a combinatorial argument by Yu et al. (2023), so
the question of a model’s true capabilities, and whether it can exhibit emergent abilities or is
constrained in specific ways, is still open.
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Figure 4: Extensive benchmarking techniques (top) suffer from poor inspectability as they have
a cubic growth rate w.r.t. the number of models, datasets and metrics involved. On
the other hand, techniques that cluster models based on dimensionality reduction
and distilled latent factors (bottom) aggregate multiple datasets and/or metrics but
suffer from poor interpretability.

Comparing LMaaS. It is not only dataset contamination and user contamination that makes
it challenging to compare general-purpose LMaaS. While the scientific literature is moving
towards multi-task, multi-models measures of performance (Liang et al., 2022), or, generally
speaking, towards more extensive and complex benchmarks (Kiela et al., 2021; Suzgun et al.,
2022), the debate is still open on how to compare two models on a broader, multi-domain set
of tasks (Chang et al., 2023). A model might be better at one task and poorer at another; it is
thus hard to imagine a measure of performance that imposes a partial/total order over LMaaS
performances. Moreover, benchmarks such as BIG-Bench (Srivastava et al., 2022), designed to
progressively include more complex task instances, may diverge from the initial benchmarking
purpose to encompass samples outside the distribution, where models exhibit failure.

Evaluating LMs and LMaaS is difficult for many reasons: with tens of models available,
hundreds of metrics, and test beds, an extensive assessment of each case is expensive and nec-
essarily time-consuming.15 LMaaS add a further layer of complexity championed by data/user
contamination, model replacement, and non-determinism. If contamination invalidates results
by boosting performances on memorized test beds, experiments conducted at different time-
frames do not reflect the current capabilities of a model, as a model may have been substituted
in the meantime with a different version whose performances varied considerably (Chen et al.,

15. If the experiments reported in (Liang et al., 2022) were conducted solely on models with pay-per-usage costs
similar to that of ChatGPT-3.5-turbo, they would cost approximately USD 18 250, without counting the cost of
machines and engineering labour.
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2023). Non-determinism, unless tamed (e.g., as suggested in Section 3.2), makes point-wise
comparisons uncertain and subject to larger numerical deviations.

We observe a tension in the recent literature between benchmarking via point-wise metrics
on a large number of models and scenarios (Liang et al., 2022; Srivastava et al., 2022; Zhong
et al., 2023), and evaluations where models are aggregated post-hoc based on latent factors that
capture variations over comparable tasks (Burnell et al., 2023). Such methods are prone to
illusory correlation, i.e., tasks are grouped and thus considered similar based on the LMaaS
performances.

An illustrative example of the difference between extensive benchmarking and latent factor
analysis is illustrated in Figure 4: approaches such as HELM (Liang et al., 2022), extensively
benchmark LMaaS for different metrics and settings, while dimensionality reduction methods
(bottom) aggregate LMs and LMaaS based on tasks where they performed similarly, yet the
computed latent factors can be hard to interpret.

In conclusion, rigorous benchmarking requires mitigating data/user contamination, non-
determinism, and most of the previous issues mentioned in the paper, thus representing a long-
term challenge on which the research community and the model providers must necessarily
collaborate.

3.4 Trustworthiness

Figure 5: LMaaS can be used to generate explanations. On the left is a real interaction with
GPT-4 (dated September 21, 2023), asked to solve a sentiment analysis task. In this
instance, the reasoning is sound, but we have no guarantee of correctness. On the
right, the workings of a fictitious decision tree to solve the same sentiment analysis
task are illustrated on text represented as 2-grams: while it can misclassify the input
as “positive”, after having represented the input as vectors, it is possible to trace the
reason for the misclassification back to the existence of the 2-gram “really good”,
which affected some of the decisions that were taken. In this sense, techniques like
decision trees are self-explaining, as they embed explanations from which one can
derive the model’s decision-making process.

LMs and LMaaS have progressively grown in sophistication up to the degree that one can
query them to produce an explanation for their output (Alvarez-Melis and Jaakkola, 2018;
Zini and Awad, 2022): we refer to such models as explanatory neural networks (AlRegib and
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Prabhushankar, 2022), to distinguish them with self-explaining, which concerns another family
of explainability techniques (Rudin, 2019). Self-explaining methods produce explanations that
make the model’s decision process transparent, as in the case of decision trees, where one can
extract an intelligible rule from the branches a model follows to make its decision. LMaaS
prompted for an explanation cannot provide insights into a model’s decision process: an expla-
nation for an LMaaS is, in fact, just a conditional prompt over a model’s previous interaction, as
sketched in Figure 5. This problem also affects standard LMs, though having access to their in-
ternal states offers deeper introspection of their decision processes (Azaria and Mitchell, 2023).
LMaaS internals accessible through API or web interface prevents introspection and limits the
explanation of a model’s decision. An explanation only enforces trust in a model if we trust
the explanation itself: for example, if correctness guarantees accompany it. An explanation for
an LMaaS is just a conditional prompt over a model’s previous interaction; hence, there is no
basis to trust it.

Popular prompting techniques methods such as Chain of Thoughts (Wei et al., 2022b) (CoT)
and its variations (Zhang et al., 2022; Besta et al., 2023; Paranjape et al., 2023; Yao et al., 2023b),
are employed to enhance an LMs’ performance by asking a model to reason step by step and write
it thoughts when producing the answer to a problem. This step-by-step reasoning improves
LMaaS performances and adds to their explainability (Kojima et al., 2022). However, the
improved performance might be due to the increasing complexity of the model (Feng et al.,
2023) and does not prevent an LMaaS from generating untrustworthy rationales (Turpin et al.,
2023). Nor do prompts have to be logically correct to increase the performance (see (Schaeffer
et al., 2023b)), as we noted in Section 3.3.

Explicitness, faithfulness, and stability are three common desiderata of explanations (Alvarez-
Melis and Jaakkola, 2018; Maynez et al., 2020b; Li et al., 2023). General-purpose LMaaS produce
answers that maximize explicitness: in this sense, an explanation, which for an LMaaS is a con-
ditioned prompt, will be immediate and understandable. On the other hand, faithfulness, as
the relevance of each input variable (in the case of LMaaS, each token) for the model’s decision,
and stability, as the consistency of an explanation for slight input variations, are not – though
some works are moving in that direction (Huang et al., 2023b; Lanham et al., 2023).

We argue that faithful explanations should include the sufficient causes that led a model
to output an answer to a specific prompt (Darwiche and Hirth, 2020), while stability is closely
connected to robustness. The research literature has provided overwhelming evidence that
explanations for machine learning models are not sufficient to imply a model’s prediction and
are highly sensitive to slight input variations (Ignatiev et al., 2019; Marques-Silva and Ignatiev,
2022; Izza et al., 2023) unless explicitly trained with that objective. Including, but not limited
to, safety-critical applications, we thus advocate for methods that explicitly embody robust-
ness guarantees, with the double intent to provide security to the end-user and not to erode
their trust. Though certificates of optimality and robustness do not scale beyond small-scale
models (Malfa et al., 2021), we champion approximate methods and probabilistic guarantees.
Such properties, combined with invariance to similar inputs and the explicitness mentioned
above (which can be enforced at training time by algorithms such as reinforcement learning
through human feedback and its variations (Bai et al., 2022; Gulcehre et al., 2023)), can align
the explainability of an LMaaS to the desiderata the research community is recommending for
models that inherently suffer of poor interpretability. While LMaaS are kept closed-source to
maintain a competitive advantage over other providers, we believe that including, alongside
the output, intermediate representations (e.g., their internal states and their output logits) is
a reasonable trade-off between closed-source and interpretability, with companies that would
benefit from red-teaming operations by teams of researchers and developers. Other lines of
research that should be pursued include interpretability and model steering. Companies can
release, alongside non-inspectable LMaaS, surrogate models trained on their representation,
similarly to the line of research Anthropic follows with Claude (Templeton et al., 2024; An-
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thropic, 2024). An LMaaS whose features are interpretable and outputs governable, e.g., via
surrogate models such as Sparse Auto-Encoders (Bricken et al., 2023), would enhance trust in
the end user and further fuel areas of research that are at the moment uncharted territory.
In conclusion, while some works are moving in the direction of grounding explanations with
external knowledge (Mei et al., 2023; Ohmer et al., 2023), we must develop strategies beyond
recursive prompting that provide formally guaranteed and unbiased introspection of a model’s
decision landscape (Bills et al., 2023), and integrate the training process with faithful post-hoc
methods (Krishna et al., 2023).

4. Mitigating LMaaS Issues: a Tentative Agenda

This work highlights four aspects that differentiate LMaaS from LMs: accessibility, repro-
ducibility, reliability, and trustworthiness. These issues affect our ability to understand the
capabilities and limitations of LMaaS, which hundreds of millions of users use daily. We,
therefore, need to work as a community to find solutions that enable researchers, policymak-
ers, and members of the public to trust LMaaS. Below, we summarize previously identified
issues and emphasize a path forward by highlighting challenges that must be addressed.

Accessibility. To enhance accessibility, companies should release the source code (or at least
detailed model cards) of the LMs that power their LMaaS. While licences that prevent free
commercial usage wouldn’t be enough to guarantee that companies can retain their com-
petitive advantage (other companies could leverage their findings and larger computational
infrastructures), we recommend that the source code (or very comprehensive model card) of
LMaaS should at least be available to auditors/evaluators/red teams with restrictions on shar-
ing. Accessibility would be further enhanced by companies that release their LMs in different
sizes, as in the case of Alpaca LLaMA and Pythia, so that researchers with access to limited
computational facilities can still experiment with their models. Regarding imbalance across
languages, fair tokenizers and pay-per-token access policies can spread the usage of LMaaS
among economically disadvantaged and low-resource language customers. We also need to
assess and quantify the gap disadvantaged users and countries with limited technology access
face when accessing LMaaS. Doing so can provide insights and techniques for companies and
policymakers to mitigate unfair treatment.

Reproducibility. Reproducibility requires that LMaaS are not taken offline when a newer
version is deployed. Providing access to such older models is certainly not remunerative
for companies. Furthermore, releasing legacy LMaaS under permissive, if not open-source,
licences is a strategy that, from a commercial perspective, likely damages providers despite
allowing them to benefit from the research community discovering and reporting biases, bugs,
and vulnerabilities. The research community would benefit from old models made available
to researchers for as long as possible, with companies that warn clearly before updates and
give lead time before deprecating old versions to enable the completion of experiments and
replication efforts. At a minimum, all the parameters that make up a model should be hashed,
and a log of “model commits’ should be offered to the user by model maintainers as the
maintainer updates the model. The benefit is that specific user interactions with the models (in
particular, benchmarks researchers make) can be matched to model commit hashes. Companies
could also offer the option to make a model’s behaviour fully deterministic (although this might
increase certain attacks on the model’s architecture). We do not argue that all models released
should be deterministic but that we prefer them for scientific evaluation purposes over their
non-deterministic counterparts. In this sense, the scientific community, in terms of journals
and conference venues, should discourage the usage of models that do not meet adequate
reproducibility requirements.
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Reliability. Dataset contamination can be addressed by two complementary approaches: on
the one hand, LMaaS should state clearly the datasets on which they have been trained, sim-
ilarly to model cards for LMs. The industrial and research communities can collaborate to
jointly develop fast indexing techniques to assess whether a model has digested an input or
a slight variation. Models that collect prompts from interaction with the users should not be
dismissed, but the research community, in the absence of tools to inspect whether a prompt
from a test bed has been collected, should discourage their usage for reporting purposes (e.g.,
benchmarking). Concerning benchmarking, we argue that the research community should
study and develop benchmarking methodologies that search for and test latent factors that
can explain performances across tasks while avoiding post-hoc methods to maintain a sufficient
degree of interpretability. As most efforts are currently directed towards the development of
extensive testbeds such as HELM or BIG-Bench, which suffer from poor inspectability and
possibly test on out-of-distribution data, we think that more can be done in the direction of
methodologies that group LMaaS and LMs by metrics and datasets, enabling interpretable
model comparisons.

Trustworthiness. Finally, faithfulness and stability should be embodied in LMaaS and ex-
plainability tools that make their behaviour intelligible. Faithfulness is achievable through
grounding and sufficiency. Despite different connotations, both terms refer to the elements of a
prompt that imply a model’s decision. In contrast, robustness and invariance to slight prompt
variations can enable stability. Formal methods and robustness have already developed a rich
corpus of literature from which the community should draw inspiration. The long-term ob-
jective is to deploy applications powered by LMaaS and LMs that can serve in safety-critical
settings. This can instil trust in the reasons behind a model’s decisions, and this is an ongoing
research effort.
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Appendix A. Commercial Licences for Common LMaaS and Opt-Out Form
In the following, the main links (at the time of submission) are listed by the company hosting
the language model.

AI2Lab
https://www.ai21.com/terms-of-use
https://www.ai21.com/privacy-policy
https://studio.ai21.com/privacy-policy

Anthropic
https://console.anthropic.com/legal/terms
https://console.anthropic.com/legal/privacy
https://support.anthropic.com/en/articles/7996868-i-want-to-opt-out-of-my-prompts-and-results-being-
used-for-training-models

Cohere
https://cohere.com/saas-agreement

Google
https://support.google.com/bard/answer/13594961
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https://support.google.com/bard/answer/13594961?hl=en
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai
https://docs.google.com/forms/d/e/1FAIpQLSdUwCF62JRg8rVYh5IaN7VWwIrLtWbxtcQDRC97zbzoq54bfg/viewform
https://blog.google/technology/ai/an-update-on-web-publisher-controls/

Inflection
https://pi.ai/profile/policy - Licence available after log-in.
https://pi.ai/profile/terms - Licence available after log-in.

Microsoft
https://privacy.microsoft.com/privacystatement

OpenAI
https://openai.com/policies/terms-of-use
https://help.openai.com/en/articles/7730893-data-controls-faq
https://platform.openai.com/docs/models/how-we-use-your-data
https://openai.com/index/introducing-gpts/

All the URLs listed above were last accessed on 30/07/2023, except for the Anthropic and OpenAI, which were last
accessed on 29/12/2023.
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