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ABSTRACT

Online navigation platforms are well optimized to solve the stan-

dard objective of minimizing travel time and typically require

precomputation-based architectures (such as Contraction Hierar-

chies and Customizable Route Planning) to do so in a fast manner.

The reason for this dependence is the size of the graph that rep-

resents the road network, which is large. The need to go beyond

minimizing the travel time and introduce various types of cus-

tomizations has led to approaches that rely on alternative route

computation or, more generally, small subgraph extraction. On a

small subgraph, one can run computationally expensive algorithms

at query time and compute optimal solutions for multiple routing

problems. In this framework, it is critical for the subgraph to (a)

be small and (b) include (near) optimal routes for a collection of

customizations. This is precisely the setting that we study in this

work. We design algorithms that extract a subgraph connecting des-

ignated terminals with the objective of minimizing the subgraph’s

size and the constraint of including near-optimal routes for a set

of predefined cost functions. We provide theoretical guarantees

for our algorithms and evaluate them empirically using real-world

road networks.

CCS CONCEPTS

• Theory of computation→ Graph algorithms analysis; Pack-

ing and covering problems.
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1 INTRODUCTION

Online navigation platforms, such as Google Maps, Waze, Apple

Maps, and others, serve hundreds of millions of users on a daily ba-

sis, helping them commute to work, go on road trips, and generally

navigate the world. To serve these requests, the platforms need to

run billions of shortest-path queries daily. To support such volumes

and to provide responses in a timely manner, these platforms rely

on architectures such as Contraction Hierarchies (CH) and Cus-

tomizable Route Planning (CRP) [5, 9] which enable very fast path

search even in large networks. These architectures are essentially

smart data structures or augmentations to the road network that

are precomputed offline based on a given metric on the network’s

edges which typically is the travel time.

As the use of such platforms becomes more ubiquitous, the need

for them to support various objectives and customizations becomes

more prevalent. For example, drivers may often prefer routes that

are not necessarily the fastest but have other features such as being

sustainable, avoiding slow-moving traffic, being safe, or having

low variance. Corporations routing fleets of trucks need to respect

certain restrictions such as avoiding narrow roads, low overpasses,

and sharp turns. Ride-sharing drivers might opt for routes that are

safer or minimize the monetary cost. As we mentioned earlier, the

known architectures rely on precomputation stages that utilize the

edge lengths with respect to the cost function that will be optimized.

In the presence of customizable preferences the accuracy of routes

given by such precomputations suffers, the objective functions one

could optimize for are large in number, and repeating the precom-

putation and offering a separate service for each one is not possible

given the scale of the road network. Moreover, combinatorial ex-

pressions of preferences (e.g., a route without difficult maneuvers

that prefers highways but avoids tolls) cause a further exponential

blow-up to these requirements. In this customizable framework,

it would clearly be beneficial to perform computations on a much

smaller subgraph of the road network. Ideally one would like to

have the capability to isolate the parts of the road network that

could possibly be relevant to a particular request and then be able

to perform optimization of complex objectives on them.

Another use case of this capability arises when the platform

wishes to run algorithms that are more complicated than the short-

est path, e.g., running algorithms for the Vehicle Routing Problem

(VRP) which routes a fleet of vehicles to complete tasks such as

pick-up and delivery of orders or supply chains [7]. Similarly, for

tourist application variants, algorithms for orienteering and other
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TSP-type problems are of interest [8]. Again in this setting hav-

ing a small subgraph that preserves shortest paths with respect to

multiple restrictions and cost functions is extremely useful. Finally,

working with a small subgraph also allows for optimizing path-

dependent cost functions, e.g., cost functions that are non-linear

in terms of the segment costs. Similarly, note that travel time com-

putation is done by means of ML models, which are often more

accurate when given the entire route, rather than when asked to

score each segment separately and sum up their delays, giving rise

to another use case of path-dependent costs.

One approach often taken by routing platforms in the effort to

extract small subgraphs of the road network is to utilize algorithms

that compute alternative routes [1, 2, 12, 13, 15, 17]. The idea is that

if such an algorithm provides diverse and also high-quality routes,

then it will recover the most reasonable ways to travel between

two endpoints and, hence, will include a good route for every ob-

jective conceivable. It is clear, however, that such a process does

not provide any guarantees in terms of the existence of a good path

for every possible objective. In cases where the objective is to avoid

certain restrictions, it is possible that a feasible path will not even

be present in the subgraph. To ensure the existence of good paths

for multiple objectives through the alternates approach, one would

need to extract a very large number of candidate routes, resulting

in unnecessarily large subgraphs. In this work, we augment the

alternates approach for subgraph generation in a way that provides

guarantees for the objective functions of interest while ensuring

the subgraph is small.

Specifically, we study the following problem: We are given a

graph representing the road network, a set of terminals, a collection

of custom cost functions, and a large number of alternative routes

between any two terminals. Each route is labeled as feasible or not

for each cost function. Feasibility can, for example, be defined either

in terms of approximating the optimal cost (i.e., feasible routes are

those that have a cost at most 1+𝜖 times the optimal cost for the cost

function under consideration, for a given parameter 𝜖) or in terms

of ranking (i.e., the top 𝑘 routes are feasible, for some parameter 𝑘).

We are asked to select a subset of the edges such that we include a

feasible route for every origin, destination, and cost function triplet,

and the cardinality of the set of selected edges is minimized. We

provide the formal description of the model in Section 2.

1.1 Our Contributions

In this work, we present the first subgraph selection algorithms

that provide guarantees of approximation on (a) the cost of the

best-included path for multiple cost functions and (b) the size of

the subgraph. The former type of guarantee is in the form of con-

straints that the algorithm needs to satisfy and the latter is in the

form of approximation guarantees on the size of the subgraph that

the algorithm achieves. We deploy techniques from submodular

minimization and design greedy algorithms. We prove theoretical

approximation factors for our algorithms and then put them to the

test against baselines in the real road networks of New York City

and Tokyo. More concretely, our results are as follows:

• We first prove NP-hardness of the subgraph extraction prob-

lem by showing equivalence to the hitting set problem.

• We then move to a warm-up case where, for every cost

function, the edge costs are either 0 or∞, meaning that we

consider cost functions that model restrictions (e.g., closures,

narrow roads for trucks, highways for scooters) and we care

about preserving connectivity of the graph for all cost func-

tions. We show that this variant of the problem remains

NP-hard and then proceed to give an approximation algo-

rithm with approximation factor logarithmic in the number

of vertices and the number of cost functions.

• Going back to the general problem, we show that we can

leverage an algorithm for the minimum submodular cover

with submodular costs problem, to achieve an approximation

that is logarithmic in the number of cost functions.

• We experimentally evaluate our algorithms and show that

the approximations achieved in real road networks are in

fact much better than the worst-case guarantees.

• Finally, we slightly modify our algorithms for application

in a more practical setting where we are given a budget

in terms of the size of the graph and wish to optimize the

quality of the subgraph, in terms of the routes it includes. We

evaluate our algorithm against an alternative route generator

baseline.

1.2 Related Work

Alternates. The problem we consider is closely related to the

literature on generating alternative routes, where the objectives are

to produce a set of alternate routes that can accommodate multiple

preferences and remain robust in the face of changes in network

conditions. [3] employs various objective functions, including best

travel time, minimum distance, road quality, scenery, and more,

to compute these alternate routes. Another approach tackles the

𝑘-shortest path problem, as introduced by [21]. However, it is worth

noting that most of the alternate routes generated through these

methods tend to be minor modifications of the original path, such

as exiting and immediately re-entering a highway. Consequently,

these alternate routes may not perform well when subjected to

different cost functions.

The most widely used methods for generating alternate routes

are the via-node and plateau methods, as referenced in [1, 6]. The

primary objective of these methods is to identify an intermediate

stop node, known as the via-node, which allows for the establish-

ment of the shortest path from the source to the destination. In

general, most of the alternate route generation approaches take a

straightforward and natural route, which involves including good

routes for multiple objectives without considering the specific cost

functions [1, 2, 12, 13, 15, 17]. This approach serves as the baseline

we compare against in the experimental section.

Minimum Submodular Cover with Submodular Cost. Aswe demon-

strate in Section 3.1, our problem is equivalent, in terms of approxi-

mation, to the Hitting Set Problem, which, in turn, is equivalent to

the set cover problem. Some of our analysis also resembles the anal-

ysis of the performance guarantees of the greedy algorithm in the

set cover problem [16]. The general version of our problem can be

viewed as a constrained submodular minimization problem. In par-

ticular, it can be conceptualized as a minimum submodular cover

with submodular cost problem [19, 20]. Other variations of the
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problem discussed in the literature include submodular knapsack

constraints [10], generalized submodular cover [18], and submodu-

lar cost submodular cover with an approximate oracle [4].

2 PRELIMINARIES

In this section, we present the formal definition of our problem.

We first introduce the notation needed for defining our problem

and then we recall some established notations that we use in our

analysis. Consider a graph denoted as 𝐺 = (𝑉 , 𝐸), where 𝑉 repre-

sents the set of vertices, and 𝐸 is the set of edges. A path, denoted

as 𝑝 , is defined as a set of edges that connects specific pairs of

vertices. We use 𝐸 (𝑝) to denote the set of edges in path 𝑝 and for

a set of paths, 𝑋 , we define 𝐸 (𝑋 ) = ∪𝑝∈𝑋𝐸 (𝑝). We call a pair of

vertices a point-of-interest (POI) pair. We consider 𝑘 different con-

straints that for each POI pair determine the set of feasible paths

and use [𝑘] = {1, 2, · · · , 𝑘} to denote the set of feasible constraints.

(Recall that the natural interpretation of these constraints is that

they express whether a route is approximately optimal for each one

of 𝑘 cost functions.) We use 𝑖 to index POI pairs and 𝑗 to index a

constraint. Following this notation, we use 𝑃𝑖 𝑗 to denote the set of

feasible paths for POI pair 𝑖 and constraint 𝑗 and 𝑃 to denote the

union of all these path sets. We formally define the SubgraphEx-

traction problem as follows.

Definition 1 (SubgraphExtraction problem). Given a graph

𝐺 = (𝑉 , 𝐸), a set 𝐼 of POI pairs, and𝑘 constraints along with feasibility

path sets 𝑃 = ∪𝑖∈𝐼 , 𝑗∈[𝑘 ]𝑃𝑖 𝑗 , the objective is to find a path set 𝑄 from

𝑃 that minimizes the set of selected edges, i.e.,

𝑄 = argmin

𝑋 ⊆𝑃
{|𝐸 (𝑋 ) | : 𝑋 ∩ 𝑃𝑖 𝑗 ≠ ∅ for all 𝑖 ∈ 𝐼 and 𝑗 ∈ [𝑘]}.

In the remainder of this section, we introduce the notation use

in our analysis.

Graph Theory. Given a graph 𝐺 = (𝑉 , 𝐸), we call a proper non-
empty set S, ∅ ⊂ 𝑆 ⊂ 𝑉 , a cut of the graph. We the set of edges with

exactly one endpoint in 𝑆 form the boundary of 𝑆 and are denoted

by 𝛿 (𝑆). A set of vertices in a graph that are linked to each other

by paths form a connected component of a graph and a graph is

connected if it has one connected component.

Approximation Algorithms We show that SubgraphExtrac-

tion problem is NP-hard (see Theorem 2), so we present an algo-

rithm that finds a near-optimal solution. Given an instance of the

problem, P = (𝐺, 𝐼, [𝑘], 𝑃), let OPT(P) be the optimal solution. An

algorithm takes an instance as input and outputs a subset of the

edges, i.e., ALG : P → 𝑄 . We say an algorithm is 𝛼-approximate to

the optimal solution if

max

P

{
|ALG(P)|
|OPT(P)|

}
≤ 𝛼

Submodular Function. A submodular function, is a set function

with diminishing marginal value gain over larger sets, i.e., adding

an element to a set always increases the function value by at least

as much as adding the same element to a larger set. More formally,

given a finite set 𝑈 , a set function 𝑓 : 2
𝑈 → R, where 2𝑈 denotes

the power set of𝑈 , is a submodular function if for every𝑋 ⊂ 𝑌 ⊂ 𝑈 ,

and every 𝑒 ∈ 𝑈 \ 𝑌 :

𝑓 (𝑋 ∪ {𝑒}) − 𝑓 (𝑋 ) ≥ 𝑓 (𝑌 ∪ {𝑒}) − 𝑓 (𝑌 ) .

The marginal value of a set 𝑌 with respect to 𝑋 ⊆ 𝑈 is defined by

Δ𝑌 𝑓 (𝑋 ) = 𝑓 (𝑋 ∪ 𝑌 ) − 𝑓 (𝑋 ) .
For the case that X is a singleton, i.e., 𝑋 = {𝑒}, we simplify the

notation to Δ𝑒 𝑓 (𝑌 ). We say a function 𝑓 is increasing if Δ𝑒 𝑓 (𝑋 ) ≥ 0

for all 𝑋 ⊆ 𝑈 and 𝑒 ∈ 𝑈 \𝑋 . A submodular and increasing function

f is called a polymatroid function if 𝑓 (∅) = 0.

3 THEORETICAL RESULTS

3.1 Equivalence to the Hitting Set Problem

In this section, we show that the SubgraphExtraction problem

is NP-hard by presenting an approximation-preserving reduction

from the HittingSet problem. In the HittingSet problem, we are

given a universe𝑈 of elements and a collectionS = {𝑆1, 𝑆2, . . . , 𝑆𝑚}
of subsets of𝑈 ; the objective is to find a subset 𝐻 ⊆ 𝑈 of minimum

cardinality such that every subset 𝑆𝑖 ∈ S contains at least one ele-

ment from 𝐻 . The problem is NP-hard [11], and it is approximable

within log( |𝑈 |) using the greedy algorithm.

Theorem 2. There is an approximation preserving reduction from

the HittingSet problem to the SubgraphExtraction problem.

Proof. Wepropose a reduction fromHittingSet to SubgraphEx-

traction where there is a 1-1 mapping between solutions of the

two instances such the size of the solution for SubgraphExtrac-

tion is exactly twice the size of the corresponding solution of

the HittingSet, therefore any approximation algorithm for Sub-

graphExtraction can be employed to give the same approxima-

tion for the HittingSet problem. Given an instance of the Hit-

tingSet problem, we construct an instance of the SubgraphEx-

traction by defining components as follows:

• 𝐺 = (𝑉 = 𝑈 ∪ {𝜂, 𝛽}, 𝐸 = {(𝑣,𝑤) : 𝑣 ∈ {𝜂, 𝛽},𝑤 ∈ 𝑈 }.
• 𝐼 = {𝜂, 𝛽}.
• 𝑚 constraints with feasibility path set 𝑃 𝑗 = {(𝜂,𝑢, 𝛽) : 𝑢 ∈
𝑆 𝑗 } (since there is only one POI pair, we simplify 𝑃1𝑗 to 𝑃 𝑗 ).

𝜂 𝛽

𝑢1

𝑢2

.

.

.

𝑢𝑖

𝑢𝑛

Figure 1: An example showing the reduction from Hit-

tingSet to SubgraphExtraction , with 𝑆1 = {𝑢1, 𝑢2}. In
the instance of SubgraphExtraction , we would have 𝑃1 =

{(𝜂,𝑢1, 𝛽), (𝜂,𝑢2, 𝛽)} (marked in red).

Note that any feasible solution 𝐻 to the HittinSet problem, can

be translated to a feasible solution 𝑄 = ∪𝑢∈𝐻 {(𝜂,𝑢, 𝛽)} since 𝐻 in-

tersects with 𝑆 𝑗 ,𝑄 contains at least one path from 𝑃 𝑗 . Note that the

size of |𝑄 | = 2|𝐻 | as our paths contain exactly two edges. Similarly,
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any feasible solution𝑄 of SubgraphExtraction can be translated

to a feasible solution 𝐻 = ∪(𝜂,𝑢,𝛽 ) ∈𝑄 {𝑢} since 𝑄 contains a path

from each 𝑃 𝑗 , so 𝐻 contains at least one element from 𝑆 𝑗 . This

argument shows that any approximation of the SubgraphExtrac-

tion problem translates to a solution with the same approximation

for the HittingSet . □

Corollary 3. SubgraphExtraction is NP-hard.

3.2 The Common Spanning Subgraph Problem

In this section, we consider a special case of the problem where (i)

all pairs of vertices are POI pairs, i.e., 𝐼 =
(𝑉
2

)
, (ii) for each constraint

𝑗 , we have an input feasibility graph 𝐺 𝑗 = (𝑉 , 𝐸 𝑗 ) where any path

in this graph is a feasible path. We assume that all these graphs are

connected so 𝑃𝑖 𝑗 ≠ ∅ for any POI pair 𝑖 and constraint 𝑗 . In this

special case, we are looking for a small subgraph that induces a

spanning subgraph in each feasibility graph. We henceforth call this

special case the CommonSpanningSubgraph problem. We restate

the definition of SubgraphExtraction for this special case:

Definition 4 (CommonSpanningSubgraph Problem). Given a

graph 𝐺 = (𝑉 , 𝐸), and connected constraint graphs 𝐺 𝑗 = (𝑉 , 𝐸 𝑗 ), the
objective is to find a subset of edges 𝑄 ⊆ 𝐸 with minimum size such

that 𝑄 yields a connected graph for each constraint, i.e., all pairs are

connected:

𝑄 = argmin

𝑋 ⊆𝐸
{|𝑋 | : 𝑋 ∩ 𝐸 𝑗 is connected for each 𝑗 ∈ [𝑘]}.

We first demonstrate that even this special case of the problem

is NP-hard. We then propose a greedy algorithm that achieves an

𝑂 (log𝑛 log𝑘)-approximation, where 𝑛 is the number of vertices,

and 𝑘 is the number of different constraints (feasibility graphs). All

the missing proofs are deferred to Appendix A.

Lemma 5. The CommonSpanningSubgraph problem is NP-hard.

In the remainder of this section, we focus on the Connectiv-

ityGreedy algorithm and its analysis. The high-level idea is to

iteratively select an edge that merges the largest number of con-

nected components over different feasibility graphs. More formally,

we start with an empty set of edges, 𝑄 . In each iteration, 𝑄 ∩ 𝐸 𝑗
induces a subgraph of the feasibility graph𝐺 𝑗 with some connected

components. For each edge 𝑒 , we compute a score that is the number

of constraints for which the addition of 𝑒 connects different con-

nected components. We augment 𝑄 with the edge with the highest

score. The algorithm stops when 𝑄 induces a connected subgraph

for all constraints. More formally, our algorithm is as follows and a

sample run is depicted in Figure 2

Theorem 6. ConnectivityGreedy is a𝑂 (log𝑛 log𝑘)-approximation

algorithm for the CommonSpanningSubgraph problem.

To prove this theorem, we use an argument based on a novel

charging scheme. We define a function 𝑞 𝑗 for each constraint 𝑗

which charges the cost of our solution, |𝑄 |, to unique cuts (subsets

of vertices). More formally, we define an auxiliary function 𝑞 𝑗 :

2
𝑉 → R≥0 for each constraint 𝑗 following the execution of the

algorithm. We start by setting all 𝑞 𝑗 (𝑆) = 0 for all 𝑗 and all cuts 𝑆 .

In iteration 𝑡 , let edge 𝑒 = (𝑢, 𝑣) be the selected edge with score 𝑠𝑒 .

So there are exactly 𝑠𝑒 constraints where 𝑒 connects two connected

Algorithm 1: ConnectivityGreedy

1 Initialize 𝐶 ← [𝑘], 𝑄 ← ∅
2 For each 𝑒 ∈ 𝐸, initialize 𝐹𝑒 ← {𝑖 : 𝑒 ∈ 𝐸𝑖 } and 𝑠𝑒 ← |𝐹𝑒 |
3 while 𝐶 is not empty do

4 𝑒 = argmax𝑒∈𝐸 𝑠𝑒
5 𝑄 ← 𝑄 ∪ {𝑒}
6 for 𝑖 ∈ 𝐶 do

7 for 𝑒 = (𝑢, 𝑣) ∈ 𝐸𝑖 do
8 if 𝑢, 𝑣 are connected in 𝑄 then

9 𝑠𝑒 ← 𝑠𝑒 − 1
10 if 𝑄 ∩ 𝐸𝑖 spans 𝐺 then

11 𝐶 ← 𝐶 \ 𝑖
12 return 𝑄

Input:

𝑎 𝑏

𝑐𝑑

𝐺1

𝑎 𝑏

𝑐𝑑

𝐺2

𝑎 𝑏

𝑐𝑑

𝐺3

Progress of Algorithm 1

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

Figure 2: An example showing the execution of Algorithm 1

on input graphs 𝐺1,𝐺2,𝐺3. We break the ties by comparing

the lexicographic ordering of the edge endpoints. In each

iteration, the orange edge is selected. The algorithm first

picks the edge (𝑎, 𝑑) as it has a score of 3 (it is present in all

feasibility graphs and connects two previously not connected

vertices). In the third iteration, the algorithm picks the edge

(𝑐, 𝑑) with score 2. Note that the edge (𝑏, 𝑑) has score 1 in the

third iteration since 𝑏 and 𝑑 are already connected in 𝐺2 at

this point.

components. For each such feasible constraint 𝑗 , let 𝑆𝑢
𝑗
and 𝑆𝑣

𝑗

be the two distinct components containing 𝑢 and 𝑣 . We set the

𝑞 𝑗 (𝑆) = 1/𝑠𝑒 where 𝑆 is the smaller connected component between

𝑆𝑢
𝑗
and 𝑆𝑣

𝑗
(see Figure 3 for an illustration of this scheme). Our

charging scheme in fact satisfies the following.

Lemma 7.

∑
𝑗,𝑆 𝑞 𝑗 (𝑆) = |𝑄 |.

Proof. We first show that each function 𝑞 𝑗 is well-defined. Note

that after adding 𝑒 in iteration 𝑡 , the two newly connected compo-

nents for constraint 𝑗 , can no longer take a non-zero value by the

function 𝑞 𝑗 so there is at most one chance of getting a non-zero

value by the function 𝑞 𝑗 for any cut 𝑆 . Additionally, for selected

edge 𝑒 with score 𝑠𝑒 , exactly 𝑠𝑒 sets take value 1/𝑠𝑒 (for different 𝑠𝑒
auxiliary functions) which sums up to 1. So the overall sum over

all functions and sets is equal to |𝑄 |. □
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𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

𝑎 𝑏

𝑐𝑑

Figure 3: An example showing how function𝑞 𝑗 assigns values.

At this point, the algorithm has selected 2 edges and has

picked the orange edge which has the highest score (𝑠𝑒 = 2).

The connected components for each constraint are shown in

dashed lines. For both constraints, the connected components

are {𝑎, 𝑏, 𝑑} and {𝑐} and the smaller components gets value of

1/𝑠𝑒 = 1/2, i.e., 𝑞1 ({𝑐}) = 𝑞2 ({𝑐}) = 1/2.

Now that we established our charging scheme which exactly

distributes the value |𝑄 | among different unique sets over different

auxiliary functions, we need to connect this scheme to the cost of

the optimal solution. To this end, we rely on the greedy logic that,

in each step, among all the edges in the boundary of connected

components, picks the edge with the most presence. For each edge,

we upper-bound the contribution of all auxiliary functions for all

the cuts that have this edge in their boundary.

Lemma 8.

∑
𝑗,𝑆 :𝛿 𝑗 (𝑆 ) ∋𝑒 𝑞 𝑗 (𝑆) = 𝑂 (log𝑛 log𝑘) where 𝑛 is the

number of vertices and 𝑘 is the number of constraints.

Proof. For this proof, we rely on the following claim, the proof

of which we defer to Appendix A.

Claim 9. Given any edge 𝑒 = (𝑢, 𝑣) ∈ ∪𝐸 𝑗 , let 𝑗 be the 𝑎-th
constraint with respect to which 𝑢, 𝑣 become connected (break ties

arbitrarily). For all the cut 𝑆 ∈ 𝑉 such that 𝑒 ∈ 𝛿 𝑗 (𝑆),

𝑞 𝑗 (𝑆) ≤
1

𝑓𝑒 − (𝑎 − 1)
.

By the above claim, we establish an individual bound in terms

of the 𝑞-value for cuts for each constraint 𝑗 . Now, we bound the

number of positive 𝑞-values for each constraint 𝑗 for some edge

𝑒 = (𝑢, 𝑣). Note that the connected components around 𝑢 and 𝑣

grow as the algorithm adds edges and edge 𝑒 is in the boundary of

all these connected components until they are merged. Now for a

set 𝑆 in round 𝑡 that has 𝑒 in its boundary, if 𝑞 𝑗 (𝑆) is non-zero, then
the size of the next connected component containing 𝑆 is at least

twice the size of 𝑆 (since 𝑆 gets merged with a bigger set). Since

this size doubles every time, there are at most log𝑛 such sets for

each constraint and fixed edge 𝑒 . Combining this with Claim 9, we

obtain: ∑︁
𝑗,𝑆 :𝛿𝑖 (𝑆 ) ∋𝑒

𝑞𝛿𝑖 (𝑆 ) =
∑︁
𝑗∈[𝑘 ]

∑︁
𝑆

𝑞𝛿𝑖 (𝑆 )

≤
∑︁

𝑎∈[𝑘 ]
log𝑛 · 1

𝑓𝑒 − (𝑎 − 1)

= 𝑂 (log𝑛 · log𝑘) .
where the last inequality follows by the bound on the harmonic

series, i.e.,

∑𝑘
𝑖=1 1/𝑖 = 𝑂 (log𝑘). □

We are now ready to prove the main theorem of the section

Proof for Theorem 6. Consider the size of the greedy solution

|𝑄 |, by Lemma 7, we have:

|𝑄 | =
∑︁
𝑗∈[𝑘 ]

∑︁
𝑆

𝑞𝛿 𝑗 (𝑆 ) )

≤
∑︁

𝑒∈OPT

∑︁
𝑗,𝑆 :𝛿 𝑗 (𝑆 ) ∋𝑒

𝑞𝛿 𝑗 (𝑆 ) ) (since OPT spans 𝐺 w.r.t any 𝑗 )

≤
∑︁

𝑒∈OPT
𝑂 (log𝑛 ln𝑘) (by Lemma 8)

= |OPT|𝑂 (log𝑛 ln𝑘) . □

Below we provide the the running-time analysis of Connectiv-

ityGreedy .

Lemma 10. The running-time of ConnectivityGreedy is

𝑂 (min(𝑘𝑛,𝑚)𝑚𝑘𝛼 (𝑛)), where 𝛼 (𝑛) is the inverse Ackermann func-

tion.

3.3 The Subgraph Extraction Problem

We now consider the general path selection problem where we are

given 𝑃𝑖 𝑗 for each POI pair 𝑖 ∈ 𝐼 and each constraint 𝑗 ∈ [𝑘]. The
objective is to output a small subgraph that includes at least one

path from each of the 𝑃𝑖 𝑗 set. To this end, we argue that our problem

can be thought of as an instantiation of the minimum submodular

cover with submodular cost problem.

Definition 11 (Minimum Submodular Cover with Submodu-

lar Cost problem [19]). Consider a polymatroid function 𝑓 and a

finite set𝑈 , a set 𝑋 ⊆ 𝑈 is said to be a submodular cover of (𝑈 , 𝑓 ) if
𝑓 (𝑋 ) = 𝑓 (𝑈 ). Given two submodular functions 𝑓 , 𝑔, the minimum

submodular cover with submodular cost problem is to find subset 𝑋

such that

min{𝑔(𝑋 ) : 𝑓 (𝑋 ) = 𝑓 (𝑈 ), 𝑋 ⊆ 𝑈 }.

We first define a set function 𝑓 : 2
P → R as follows:

𝑓 (𝑋 ) = |{𝑃𝑖, 𝑗 : 𝑃𝑖, 𝑗 ∩ 𝑋 ≠ ∅}|,

in other words, 𝑓 counts how many of the 𝑃𝑖 𝑗 set are “hit” by a set

of path 𝑋 ⊆ P.

Lemma 12. 𝑓 is a polymatroid function.

Proof. First, note that 𝑓 (∅) = 0. Consider any two path sets 𝑋

and 𝑌 such that 𝑋 ⊂ 𝑌 ⊂ P, and let 𝑃 (𝑋 ) = 𝑃𝑖 𝑗 : 𝑃𝑖 𝑗 ∩ 𝑋 ≠ ∅ and
𝑃 (𝑌 ) = 𝑃𝑖 𝑗 : 𝑃𝑖 𝑗 ∩ 𝑌 ≠ ∅. We first observe that 𝑃 (𝑋 ) ⊆ 𝑃 (𝑌 ). Now,
consider any path 𝑝 ∈ P \ 𝑌 . Let Δ𝑝 (𝑌 ) be the number of extra

𝑝𝑖 𝑗 hit by 𝑌 ∪ 𝑝 compared to 𝑃 (𝑌 ). Since 𝑃 (𝑋 ) ⊆ 𝑃 (𝑌 ), we have
Δ𝑝 (𝑋 ) ≥ Δ𝑝 (𝑌 ). Note that Δ𝑝 (𝑌 ) = Δ𝑝 𝑓 (𝑌 ) by the definition of 𝑓 .

Therefore, we have:

𝑓 (𝑋 ∪ {𝑝}) − 𝑓 (𝑋 ) ≥ 𝑓 (𝑌 ∪ {𝑝}) − 𝑓 (𝑌 ),

whichmakes 𝑓 a submodular function. Additionally, since including

more paths in 𝑄 always weakly increases the number of 𝑃𝑖 𝑗 hit by

𝑄 , 𝑓 is an increasing function. Since the function 𝑓 is submodular,

increasing, and 𝑓 (∅) = 0, 𝑓 is, therefore, a polymatroid function. □

Recall that for a set X of paths, we use 𝐸 (𝑋 ) to denote the edges.

Let function 𝑔 on subset of paths P be defined as 𝑔(𝑋 ) = |𝐸 (𝑋 ) |.
It is easy to see that this 𝑔 is submodualar. Note that since our
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objective is to minimize the size of the subgraph while hitting all

of 𝑃𝑖 𝑗 sets, we can write our problem as follows:

min{𝑔(𝑄) : 𝑓 (𝑄) = 𝑓 (P), 𝑄 ⊆ P}.
By Definition 11, our problem is a special case of the minimum

submodular cover with submodular cost problem. We tailor the

greedy algorithm for this problem to our problem (see Algorithm 2)

and then can use the following result to get the approximation of

the greedy algorithm.

Theorem 13 ([19]). Greedy algorithm is a 𝜌𝐻 (𝛾)-approximation

algorithm for minimum submodular cover with submodular cost

problems with submodular functions 𝑓 , 𝑔 where 𝛾 = max𝑥∈𝑈 𝑓 (𝑥)
and 𝜌 is the curvature of the submodular cost 𝑔 formally defined as:

𝜌 = min

𝑆 :min-cost cover

∑
𝑥∈𝑆 𝑔(𝑥)
𝑔(𝑆) .

Algorithm 2: GeneralGreedy

1 𝑄 ← ∅;
2 while ∃𝑝 ∈ P such that Δ𝑝 𝑓 (𝑄) > 0 do

3 𝑝 = argmax

Δ𝑝 𝑓 (𝑄 )
𝑔 (𝑝 ) ;

4 𝑄 ← 𝑄 ∪ {𝑝};
5 return 𝑄

In our setting, since each path 𝑝 only serves one POI pair, we have

𝛾 = max𝑝∈P 𝑓 (𝑝) is bounded by 𝑘 . Combining with the analysis in

[19], we get the following approximation guarantee of General-

Greedy .

Corollary 14. GeneralGreedy is a 𝜌𝐻 (𝑘)-approximation algo-

rithm for the SubgraphExtraction problem, where

𝜌 = min

OPT(P)

∑
𝑝∈OPT(P) 𝑔(𝑝)
𝑔(OPT(P)) .

One can interpret the 𝜌 as the level of “double counting” of edges

in the optimal solution. The more edges shared among the paths in

the optimal solution, the higher the 𝜌 .

For completeness we include the running-time analysis of Gen-

eralGreedy below.

Lemma 15. The running-time of GeneralGreedy is 𝑂 (𝑘 |P |2).

Proof. First, note that, similar to Algorithm 1, if 𝑄 includes

all 𝑝 ∈ P, then the while loop will terminate, and the number of

iterations of the while loop is therefore bounded by |P |. Given
𝑄 , the time needed to compute 𝑓 (𝑄) is 𝑂 ( |𝐼 |𝑘). Since each 𝑝 only

serves one point of interest (poi), computing Δ𝑝 𝑓 (𝑄) takes 𝑂 (𝑘),
and there are at most |P | such computations. Since |P | ≥ |𝐼 |, we
therefore have that each iteration takes 𝑂 (𝑘 |P |), making the total

running time 𝑂 (𝑘 |P |2). □

4 EXPERIMENTS

In this section, we evaluate variants of our algorithm experimentally.

Given that our work is the first to consider explicitly optimizing

the subgraph for given objectives, the only baselines that we can

compare against from prior work are the alternate route subgraph

Figure 4: The performance of GeneralGreedy vs the optimal

solution and the penalty method baseline (with 10 alternates per

origin-destination pair) in randomly generated instances

Figure 5: The performance of GeneralGreedy vs the optimal

solution and the penalty method baseline (with 10 alternates per

origin-destination pair) in actual instances

generation algorithms that are oblivious to the objectives.We report

the results against the penalty method [12], which is known to be a

high-quality solution for the alternate route subgraph generation

problem.

4.1 Road Network and Cost Functions

We evaluate our algorithms on two real-world road networks, specif-

ically, the road networks of New York City and Tokyo. We extract

the graphs for these cities from OpenStreetMap [14]. In each one of

the cities, we select 8 random points of interest that are the termi-

nals that we wish to connect, yielding, in turn, 64 origin-destination

pairs in 𝐼 . In a real application, these could represent central hubs

or the places that a particular user frequently visits.

Our feasible path sets 𝑃𝑖 𝑗 are defined through four cost functions,

for which we wish to maintain near-optimal paths. These functions

are the following:

• The travel time. We extract the travel time of a road seg-

ment by dividing the length by the speed limit as given in

OpenStreetMap.
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• The length, i.e., the total distance driven on the path.

• A rate-card type cost, i.e., a combination of the travel time

and the distance traveled.

• Avoid highways. Here the base cost is the travel time and a

penalty (we use the value of 100 seconds per highway road

segment for our experiments) is added for each highway seg-

ment in the route. In the OpenStreetMap data, we consider

any segment with 3 or more lanes to be a highway.

• Avoid narrow roads. Again the base cost is the travel time,

but here a penalty (again we use the value of 100 seconds

per narrow road segment for our experiments) is added for

narrow roads, which we define as those having a single lane.

We aim to select a subset of the edges with cardinality as small as

possible that contains approximately optimal paths for every pair

of terminals and every cost function. The “approximate optimality”

(for a single trip and cost function) here is defined in two ways, one

in each of the following two sections. In the first one (the satisfactory

routes variant of the experiment), we put a path in 𝑃𝑖 𝑗 if and only if

the path is in the top four paths between the endpoints of 𝑖 for cost

function 𝑗 . The second variant of the experiment (the accuracy vs

graph size variant) measures approximate optimality using the cost

functions themselves by means of the accuracy metric:

Definition 16 (Accuracy). We say the accuracy of trip 𝑝 ∈ P𝑖
with respect to some cost function 𝑐 𝑗 is

𝑎 𝑗 (𝑝) =
minℓ∈P𝑖 𝑐

𝑗 (ℓ)
𝑐 𝑗 (𝑝)

.

We note that 0 < 𝑎 𝑗 (𝑝) ≤ 1. We define the metric for the entire

subgraph as the minimum of the maximum accuracy of any cost

functions and POI pairs. In other words, the accuracy of a subgraph

is the minimum accuracy of the best trip included for each cost

function with respect to each POI pair. Formally:

Definition 17 (Accuracy-Level). Given a subset of edges𝑄 , we

say the accuracy level of the subset is

min

𝑖, 𝑗
max

𝑝∈𝑄
𝑎 𝑗 (𝑝)

The trade-off of interest is then the one between the size of the

subgraph in terms of the number of edges and its accuracy level.

4.2 Satisfactory Routes Variant

In the first round of experiments, we evaluate the algorithm pro-

posed in Section 3. For each origin, destination, and cost function

triplet, some of the routes are designated as satisfactory and the sub-

graph needs to include at least one such path per triplet. In general

applications the designation can be done in any way, e.g., request-

ing that the path is among the top 𝑘 paths for the cost function

under consideration, or that the path satisfies some approximate

optimality threshold. For our experiment, we deem a path as satis-

factory if it falls within the top four routes among the ones for the

corresponding POI pair and cost function. Then we request that the

subgraph includes at least one of the top four paths for every origin,

destination, and cost function, and seek to minimize the number of

included edges.

We first testGeneralGreedy on synthetic instances. To generate

multiple instances, we use synthetic cost functions (noting that

Figure 6: more refined accuracy size trade-off for New York

each city represents a single instance for natural cost functions).

We randomly label some of the paths as satisfactory for each of the

cost functions, with specifically four paths labeled as such for each

origin, destination, and cost function triplet.

In Figure 4, we present the performance of GeneralGreedy over

the random instances. We also plot the optimal solution, extracted

using a (very slow and non-practical) linear programming-based

algorithm, alongside the penalty method baseline that extracts 10

alternates for each origin-destination pair. It is worth noting that

the performance of GeneralGreedy exceeds the theoretical guar-

antees. On average, the solution output by GeneralGreedy is only

1.12 times the size of the optimal graph. Additionally, as observed,

by keeping, on average, only 65% of the initial subgraph, we can

ensure that for any source, destination, and cost functions, at least

one satisfactory trip is included.

We also testGeneralGreedy on real-world instances with actual

cost functions discussed in Section 4.1. Similar to the synthetic

instances, we consider a path satisfactory if it ranks among the

top four routes for the same pair of points of interest (POI) with

respect to the corresponding cost functions. We then require that

the subgraph includes at least one of the top four paths for every

origin, destination, and cost function while seeking to minimize

the number of included edges.

In Figure 5, we present the performance of GeneralGreedy for

New York and Tokyo. For New York, where the subgraph size of the

penalty method alternates baseline is 8, 699, the subgraph output by

GeneralGreedy contains 3, 364 edges, while the optimal subgraph

has a size of 2, 788. For Tokyo, the baseline graph contains 27, 207

edges, the GeneralGreedy subgraph has 8, 583 edges, while the

optimal subgraph contains 6, 661 edges. We note that the full graph

sizes for the two cities are in the hundreds of thousands. We observe

that our algorithm recovers most of the headroom towards the

optimal solutions.

4.3 Accuracy vs Graph Size Variant

Now we turn to a variant of the experiment that we deem as more

practically relevant: Suppose we are given a budget on the size of

the subgraph and we would like to ensure approximate optimality

of the included paths as much as possible. In this regard, we can
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Figure 7: more refined accuracy size trade-off for Tokyo

keep adding edges or paths to our subgraph until we have reached

the available budget. It is then interesting to plot what the different

algorithms can achieve in terms of route quality as a function of

the size of the subgraph that they are allowed to construct. We will

again compare the performance of our greedy algorithm (after we

slightly modify it to fit the new setting) against the penalty method

alternates baseline. To extract the tradeoff for the baseline, we let

the number of alternates extracted per origin-destination pair vary.

As we will see, the penalty method requires around 10 alternates

to perform well, which is also the reason why 10 was selected as

the de facto value in the previous section’s experiment.

Note that the GeneralGreedy algorithm terminates once it has

included at least one feasible trip for each cost function 𝑗 with

respect to each POI pair 𝑖 . To fully utilize the concept of accuracy

and provide more possible trade-off options, we modify Gener-

alGreedy as follows: we again start with an empty set 𝑄 . At any

point, the algorithm maintains an accuracy table that keeps track

of the best accuracy for each cost function in each POI pair. In

each iteration, the algorithm identifies the POI pair 𝑖 that currently

has the minimum accuracy in the accuracy table and selects a trip

𝑝 ∈ 𝑃𝑖 , maximizing the difference between the minimum accuracy

of the POI before and after adding 𝑝 . We continue this process until

we exceed the budget for the included edges. The pseudocode of

the modified algorithm, called ModifiedGreedy, is provided in

Algorithm 3.

Algorithm 3: ModifiedGreedy

1 Input: edge budget 𝐵

2 Initialize: 𝑄 ← ∅;
3 while | ∪𝑝∈𝑄 𝑒 (𝑝) | ≤ 𝐵 do

4 Compute the accuracy table 𝐴(𝑄)
5 𝑎𝑖∗, 𝑗∗ ← argmin

𝑖, 𝑗

𝐴𝑖, 𝑗

6 𝑝 ← argmax

𝑝∈𝑃𝑖∗
min(𝐴(𝑄 ∪ 𝑝) [𝑖 :]) −min(𝐴(𝑄) [𝑖 :])

7 𝑄 ← 𝑄 ∪ 𝑝
8 return 𝑄

Figures 6 and 7 plot the performance of our algorithm and the

penalty method baseline against the size of the subgraph. We ob-

serve that our algorithm achieves full accuracy using considerably

fewer road segments. For both New York and Tokyo, the experi-

ments suggest that our method reaches maximum accuracy using

only about half of the road segments that the baseline uses. In fact,

we can see that in order to get any positive accuracy (let alone

one that approaches 1), the baseline must already use a lot more

edges than our algorithm needs to converge to full accuracy. This

considerable discrepancy highlights the efficiency of our procedure.

5 CONCLUSION

In this work, our focus lies in designing algorithms for the effi-

cient extraction of subgraphs that not only minimize size but also

incorporate near-optimal routes for a predefined set of cost func-

tions. Initially, we established the NP-hardness of the subgraph

extraction problem by demonstrating its equivalence to the hitting

set problem. Subsequently, we introduced a logarithmic approxi-

mation algorithm tailored for cases where edge costs are limited

to binary values. We then applied a minimum submodular cover

with submodular costs algorithm, achieving an approximation that

scales logarithmically with the number of constraints induced by

the cost functions. Our empirical evaluation on real road networks

confirmed the strong performance of our algorithms, surpassing

the worst-case guarantees and demonstrating their practical appli-

cability.

Furthermore, to enhance the practicality of our proposed solu-

tions, we modified the algorithm to provide a more refined trade-off

between the subgraph size and the minimum accuracy for any cost

function. Once again, we demonstrated that our approach signifi-

cantly surpasses the existing baseline by achieving an optimal or

near-optimal accuracy level using a substantially smaller subgraph.

Overall, We initialize the study on subgraph extraction in facil-

itating efficient and adaptable navigation systems that can cater

to a diverse range of user preferences and constraints, thereby

enhancing the customizability of online navigation platforms.
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A MISSING PROOFS FROM SECTION 3.2

Lemma 5. The CommonSpanningSubgraph problem is NP-hard.

Proof. It is known that the Hitting set problem is NP-hard. We

now propose the following reduction from HittingSet to Com-

monSpanningTree as follows: consider an instance of the hitting

set problem, with {𝑆1, 𝑆2, . . . , 𝑆𝑚} and a number 𝑏. We construct an

instance in our problem as follows:

• Let graph 𝐺 = (𝑉 = 𝑈 ∪ {𝜂, 𝛽}, 𝐸 = {(𝑣,𝑤) : 𝑣 ∈ {𝜂, 𝛽},𝑤 ∈
𝑈 }).

• Define𝑚 constraints where 𝐸𝑖 = {(𝑤,𝜂) : 𝑎 ∈ 𝑆𝑖 } ∪ {(𝑎, 𝛽) :
𝑎 ∈ ∪𝑖𝑆𝑖 } for all 𝑖 . In other words, 𝐸𝑖 contains (𝑤, 𝛽) for all
𝑤 and (𝑤,𝜂) only for𝑤 ∈ 𝑆𝑖 .

Assume for contradiction, that there exist an polynomial time algo-

rithm that can find the subset of edges𝑄 with the smallest carnality,

such that 𝑄 ∈ 𝐸𝑖 spans the all vertices for all 𝐸𝑖 . First note that

we can wlog assume 𝑄 contains all the edges (𝑎, 𝛽)1. We now ar-

gue that 𝐻 = {𝑤 : (𝑤,𝜂) ∈ 𝑄} is the optimal solution for the

HittingSet problem. Assume for contradiction that there exist a

better solution 𝐻 ′ such that 𝐻 ′ ∩ 𝑆𝑖 ≠ ∅, and |𝐻 ′ | < |𝐻 |. Note that
the set 𝑄 ′ = {(𝑤,𝜂) : 𝑤 ∈ 𝐻 ′} ∪ {(𝑤, 𝛽) : ∀𝑤} is a valid solution

the CommonSpanningTree problem, since for each 𝐸𝑖 , all of the

vertices 𝑤 is connected to 𝛽 and at lest one 𝑤 is connected to 𝜂

by definition that 𝐻 ′ is a solution of the HittingSet problem and

the construction of 𝑄 ′, contradicting with the assumption that 𝑄

is optimal. 𝐻 is therefore the optimal solution for the HittingSet

problem. Since the HittingSet problem is known to be NP-hard,

we therefore conclude the CommonSpanningTree problem is also

NP-hard.

To show that the CommonSpanningTree is also in NP, we can

have the certificate be the proposed subset of edges 𝑄 and we can

simply check if 𝑄 ∩ 𝐸𝑖 connects all the vertices for all 𝑖 , which is

doable in polynomial time. We therefore conclude that the Com-

monSpanningTree problem is NP-complete. □

Claim 9. Given any edge 𝑒 = (𝑢, 𝑣) ∈ ∪𝐸 𝑗 , let 𝑗 be the 𝑎-th
constraint with respect to which 𝑢, 𝑣 become connected (break ties

arbitrarily). For all the cut 𝑆 ∈ 𝑉 such that 𝑒 ∈ 𝛿 𝑗 (𝑆),

𝑞 𝑗 (𝑆) ≤
1

𝑓𝑒 − (𝑎 − 1)
.

Proof. We first make the following observation based on the

greedy nature of our algorithm.

Observation 18. Consider an edge 𝑒 = (𝑢, 𝑣) ∈ ∪𝐸 𝑗 , suppose
at some point of the execution, 𝑢, 𝑣 is connected with respect to ℓ

number of feasible constraints, then the next edge chosen by the

greedy algorithm has a score at least:

𝑓𝑒 − ℓ, (1)

where 𝑓𝑒 = |𝐹𝑒 | is the number of 𝐸 𝑗 that include 𝑒 .

Proof. By definition of 𝑠𝑒 , we have at this point 𝑠𝑒 = 𝑓𝑒 − ℓ .

Indeed, choosing the edge 𝑒 would attain the ratio in (1); the ratio

of the edge chosen by the greedy algorithm can only be weakly

bigger. □

Lemma follows immediately from the above observation in the

case where the (𝑢, 𝑣) is connected in each feasible constraint one-

by-one (with 𝑎 − 1 replacing ℓ for each 𝑎). In general, 𝑢, 𝑣 might be

connected in multiple feasible constraints at the same time (e.g., the

greedy algorithm might actually pick 𝑒). In this case, the number of

feasible constraints with respect to which 𝑢, 𝑣 is already connected

is weakly less than 𝑎 − 1, making 𝑞𝛿𝑖 (𝑆 ) even smaller. □

1
if there exist an edge (𝑤′, 𝛽 ) that are not included in 𝑄 , then by connectivity we

have (𝑤′, 𝜂 ) has to be in𝑄 and we can always remove (𝑤′, 𝜂 ) and add back (𝑤′, 𝛽 )
without losing connectivity and this process weakly decreases the number of edges in

𝑄
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Lemma 10. The running-time of ConnectivityGreedy is

𝑂 (min(𝑘𝑛,𝑚)𝑚𝑘𝛼 (𝑛)), where 𝛼 (𝑛) is the inverse Ackermann func-

tion.

Proof. First, note that the number of iterations of the while loop

is at most 𝑂 (min(𝑘𝑛,𝑚) times since each constraint is satisfied as

soon as a spanning tree is added for that constraint so at most

𝑘 (𝑛 − 1) edges can be added for each constraint. Also at most𝑚

edges can be added, i.e., all the edges. Then the outer loop can run

for 𝑂 (min(𝑘𝑛,𝑚) . Finding the edge 𝑒 with the smallest 𝑠𝑒 takes

𝑂 (𝑚) time. Now for the score update portion, we basically need

to maintain the connected components for each constraint. This

can be done using the disjoint-set data structure which supports

addition, union, or find operations with 𝑡𝛼 (𝑛) time. We need to

update the score of each edge for each constraint if its endpoints are

merged, i.e., until they are in the same connected component for the

current constraint and they do not have the same label as before. To

support this operation in addition to the disjoint-set data structure,

for each connectivity constraint, we keep the last time the label for

the connected component was updated. With the disjoint-set data

structure, checking whether 𝑄 spans 𝐺 for connectivity constraint

𝑖 is trivial (𝑂 (1)). So, overall, for the operations inside the loop we

have 𝑂 (𝑚 +𝑚𝑘𝛼 (𝑛) + 1) = 𝑂 (𝑚𝑘𝛼 (𝑛)) □
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