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ABSTRACT

Online navigation platforms are well optimized to solve the stan-
dard objective of minimizing travel time and typically require
precomputation-based architectures (such as Contraction Hierar-
chies and Customizable Route Planning) to do so in a fast manner.
The reason for this dependence is the size of the graph that rep-
resents the road network, which is large. The need to go beyond
minimizing the travel time and introduce various types of cus-
tomizations has led to approaches that rely on alternative route
computation or, more generally, small subgraph extraction. On a
small subgraph, one can run computationally expensive algorithms
at query time and compute optimal solutions for multiple routing
problems. In this framework, it is critical for the subgraph to (a)
be small and (b) include (near) optimal routes for a collection of
customizations. This is precisely the setting that we study in this
work. We design algorithms that extract a subgraph connecting des-
ignated terminals with the objective of minimizing the subgraph’s
size and the constraint of including near-optimal routes for a set
of predefined cost functions. We provide theoretical guarantees
for our algorithms and evaluate them empirically using real-world
road networks.
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1 INTRODUCTION

Online navigation platforms, such as Google Maps, Waze, Apple
Maps, and others, serve hundreds of millions of users on a daily ba-
sis, helping them commute to work, go on road trips, and generally
navigate the world. To serve these requests, the platforms need to
run billions of shortest-path queries daily. To support such volumes
and to provide responses in a timely manner, these platforms rely
on architectures such as Contraction Hierarchies (CH) and Cus-
tomizable Route Planning (CRP) [5, 9] which enable very fast path
search even in large networks. These architectures are essentially
smart data structures or augmentations to the road network that
are precomputed offline based on a given metric on the network’s
edges which typically is the travel time.

As the use of such platforms becomes more ubiquitous, the need
for them to support various objectives and customizations becomes
more prevalent. For example, drivers may often prefer routes that
are not necessarily the fastest but have other features such as being
sustainable, avoiding slow-moving traffic, being safe, or having
low variance. Corporations routing fleets of trucks need to respect
certain restrictions such as avoiding narrow roads, low overpasses,
and sharp turns. Ride-sharing drivers might opt for routes that are
safer or minimize the monetary cost. As we mentioned earlier, the
known architectures rely on precomputation stages that utilize the
edge lengths with respect to the cost function that will be optimized.
In the presence of customizable preferences the accuracy of routes
given by such precomputations suffers, the objective functions one
could optimize for are large in number, and repeating the precom-
putation and offering a separate service for each one is not possible
given the scale of the road network. Moreover, combinatorial ex-
pressions of preferences (e.g., a route without difficult maneuvers
that prefers highways but avoids tolls) cause a further exponential
blow-up to these requirements. In this customizable framework,
it would clearly be beneficial to perform computations on a much
smaller subgraph of the road network. Ideally one would like to
have the capability to isolate the parts of the road network that
could possibly be relevant to a particular request and then be able
to perform optimization of complex objectives on them.

Another use case of this capability arises when the platform
wishes to run algorithms that are more complicated than the short-
est path, e.g., running algorithms for the Vehicle Routing Problem
(VRP) which routes a fleet of vehicles to complete tasks such as
pick-up and delivery of orders or supply chains [7]. Similarly, for
tourist application variants, algorithms for orienteering and other
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TSP-type problems are of interest [8]. Again in this setting hav-
ing a small subgraph that preserves shortest paths with respect to
multiple restrictions and cost functions is extremely useful. Finally,
working with a small subgraph also allows for optimizing path-
dependent cost functions, e.g., cost functions that are non-linear
in terms of the segment costs. Similarly, note that travel time com-
putation is done by means of ML models, which are often more
accurate when given the entire route, rather than when asked to
score each segment separately and sum up their delays, giving rise
to another use case of path-dependent costs.

One approach often taken by routing platforms in the effort to
extract small subgraphs of the road network is to utilize algorithms
that compute alternative routes [1, 2, 12, 13, 15, 17]. The idea is that
if such an algorithm provides diverse and also high-quality routes,
then it will recover the most reasonable ways to travel between
two endpoints and, hence, will include a good route for every ob-
jective conceivable. It is clear, however, that such a process does
not provide any guarantees in terms of the existence of a good path
for every possible objective. In cases where the objective is to avoid
certain restrictions, it is possible that a feasible path will not even
be present in the subgraph. To ensure the existence of good paths
for multiple objectives through the alternates approach, one would
need to extract a very large number of candidate routes, resulting
in unnecessarily large subgraphs. In this work, we augment the
alternates approach for subgraph generation in a way that provides
guarantees for the objective functions of interest while ensuring
the subgraph is small.

Specifically, we study the following problem: We are given a
graph representing the road network, a set of terminals, a collection
of custom cost functions, and a large number of alternative routes
between any two terminals. Each route is labeled as feasible or not
for each cost function. Feasibility can, for example, be defined either
in terms of approximating the optimal cost (i.e., feasible routes are
those that have a cost at most 1+e€ times the optimal cost for the cost
function under consideration, for a given parameter €) or in terms
of ranking (i.e., the top k routes are feasible, for some parameter k).
We are asked to select a subset of the edges such that we include a
feasible route for every origin, destination, and cost function triplet,
and the cardinality of the set of selected edges is minimized. We
provide the formal description of the model in Section 2.

1.1 Our Contributions

In this work, we present the first subgraph selection algorithms
that provide guarantees of approximation on (a) the cost of the
best-included path for multiple cost functions and (b) the size of
the subgraph. The former type of guarantee is in the form of con-
straints that the algorithm needs to satisfy and the latter is in the
form of approximation guarantees on the size of the subgraph that
the algorithm achieves. We deploy techniques from submodular
minimization and design greedy algorithms. We prove theoretical
approximation factors for our algorithms and then put them to the
test against baselines in the real road networks of New York City
and Tokyo. More concretely, our results are as follows:

o We first prove NP-hardness of the subgraph extraction prob-
lem by showing equivalence to the hitting set problem.
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e We then move to a warm-up case where, for every cost
function, the edge costs are either 0 or co, meaning that we
consider cost functions that model restrictions (e.g., closures,
narrow roads for trucks, highways for scooters) and we care
about preserving connectivity of the graph for all cost func-
tions. We show that this variant of the problem remains
NP-hard and then proceed to give an approximation algo-
rithm with approximation factor logarithmic in the number
of vertices and the number of cost functions.

e Going back to the general problem, we show that we can
leverage an algorithm for the minimum submodular cover
with submodular costs problem, to achieve an approximation
that is logarithmic in the number of cost functions.

e We experimentally evaluate our algorithms and show that
the approximations achieved in real road networks are in
fact much better than the worst-case guarantees.

o Finally, we slightly modify our algorithms for application
in a more practical setting where we are given a budget
in terms of the size of the graph and wish to optimize the
quality of the subgraph, in terms of the routes it includes. We
evaluate our algorithm against an alternative route generator
baseline.

1.2 Related Work

Alternates. The problem we consider is closely related to the
literature on generating alternative routes, where the objectives are
to produce a set of alternate routes that can accommodate multiple
preferences and remain robust in the face of changes in network
conditions. [3] employs various objective functions, including best
travel time, minimum distance, road quality, scenery, and more,
to compute these alternate routes. Another approach tackles the
k-shortest path problem, as introduced by [21]. However, it is worth
noting that most of the alternate routes generated through these
methods tend to be minor modifications of the original path, such
as exiting and immediately re-entering a highway. Consequently,
these alternate routes may not perform well when subjected to
different cost functions.

The most widely used methods for generating alternate routes
are the via-node and plateau methods, as referenced in [1, 6]. The
primary objective of these methods is to identify an intermediate
stop node, known as the via-node, which allows for the establish-
ment of the shortest path from the source to the destination. In
general, most of the alternate route generation approaches take a
straightforward and natural route, which involves including good
routes for multiple objectives without considering the specific cost
functions [1, 2, 12, 13, 15, 17]. This approach serves as the baseline
we compare against in the experimental section.

Minimum Submodular Cover with Submodular Cost. As we demon-
strate in Section 3.1, our problem is equivalent, in terms of approxi-
mation, to the Hitting Set Problem, which, in turn, is equivalent to
the set cover problem. Some of our analysis also resembles the anal-
ysis of the performance guarantees of the greedy algorithm in the
set cover problem [16]. The general version of our problem can be
viewed as a constrained submodular minimization problem. In par-
ticular, it can be conceptualized as a minimum submodular cover
with submodular cost problem [19, 20]. Other variations of the
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problem discussed in the literature include submodular knapsack
constraints [10], generalized submodular cover [18], and submodu-
lar cost submodular cover with an approximate oracle [4].

2 PRELIMINARIES

In this section, we present the formal definition of our problem.
We first introduce the notation needed for defining our problem
and then we recall some established notations that we use in our
analysis. Consider a graph denoted as G = (V, E), where V repre-
sents the set of vertices, and E is the set of edges. A path, denoted
as p, is defined as a set of edges that connects specific pairs of
vertices. We use E(p) to denote the set of edges in path p and for
a set of paths, X, we define E(X) = UpexE(p). We call a pair of
vertices a point-of-interest (POI) pair. We consider k different con-
straints that for each POI pair determine the set of feasible paths
and use [k] = {1,2,---,k} to denote the set of feasible constraints.
(Recall that the natural interpretation of these constraints is that
they express whether a route is approximately optimal for each one
of k cost functions.) We use i to index POI pairs and j to index a
constraint. Following this notation, we use P;; to denote the set of
feasible paths for POI pair i and constraint j and P to denote the
union of all these path sets. We formally define the SUBGRAPHEX-
TRACTION problem as follows.

DEFINITION 1 (SUBGRAPHEXTRACTION PROBLEM). Given a graph
G = (V,E), asetI of POI pairs, and k constraints along with feasibility
path sets P = Ujcp je[k] Pij, the objective is to find a path set Q from
P that minimizes the set of selected edges, i.e.,

Q =argmin{|E(X)|: XN P;; # 0 foralli € I and j € [k]}.
XcP

In the remainder of this section, we introduce the notation use
in our analysis.
Graph Theory. Given a graph G = (V, E), we call a proper non-
empty set S, 0 € S C V, a cut of the graph. We the set of edges with
exactly one endpoint in S form the boundary of S and are denoted
by 8(S). A set of vertices in a graph that are linked to each other
by paths form a connected component of a graph and a graph is
connected if it has one connected component.
Approximation Algorithms We show that SUBGRAPHEXTRAC-
TION problem is NP-hard (see Theorem 2), so we present an algo-
rithm that finds a near-optimal solution. Given an instance of the
problem, P = (G, I, [k], P), let OPT(%P) be the optimal solution. An
algorithm takes an instance as input and outputs a subset of the
edges, i.e, ALG : $ — Q. We say an algorithm is a-approximate to
the optimal solution if

{ |ALG(P)| }
max|\————-( <«
P | |OPT(P)|

Submodular Function. A submodular function, is a set function
with diminishing marginal value gain over larger sets, i.e., adding
an element to a set always increases the function value by at least
as much as adding the same element to a larger set. More formally,
given a finite set U, a set function f : 2V — R, where 2V denotes
the power set of U, is a submodular function if for every X c Y c U,
andeveryee U\ Y:

fXU{e}) - f(X) = f(YU{e}) - f(Y).
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The marginal value of a set Y with respect to X C U is defined by

Ayf(X) = f(XUY) - f(X).
For the case that X is a singleton, i.e., X = {e}, we simplify the
notation to A, f(Y). We say a function f is increasing if A f(X) > 0
forallX C U and e € U \ X. A submodular and increasing function
fis called a polymatroid function if f(0) = 0.

3 THEORETICAL RESULTS
3.1 Equivalence to the Hitting Set Problem

In this section, we show that the SUBGRAPHEXTRACTION problem
is NP-hard by presenting an approximation-preserving reduction
from the HITTINGSET problem. In the HITTINGSET problem, we are
given a universe U of elements and a collection S = {S1,S2,...,Sm}
of subsets of U; the objective is to find a subset H C U of minimum
cardinality such that every subset S; € S contains at least one ele-
ment from H. The problem is NP-hard [11], and it is approximable
within log(|U]) using the greedy algorithm.

THEOREM 2. There is an approximation preserving reduction from
the HITTINGSET problem to the SUBGRAPHEXTRACTION problem.

ProOF. We propose a reduction from HITTINGSET to SUBGRAPHEX-
TRACTION where there is a 1-1 mapping between solutions of the
two instances such the size of the solution for SUBGRAPHEXTRAC-
TION is exactly twice the size of the corresponding solution of
the HITTINGSET, therefore any approximation algorithm for Sus-
GRAPHEXTRACTION can be employed to give the same approxima-
tion for the HITTINGSET problem. Given an instance of the Hr-
TINGSET problem, we construct an instance of the SUBGRAPHEX-
TRACTION by defining components as follows:

e G=(V=UU{nBLE={(v,w):ve{np},weU}
e I={n, B}

e m constraints with feasibility path set Pj = {(n,u,p) : u €
S;j} (since there is only one POI pair, we simplify P;; to P;).

ol =0

Figure 1: An example showing the reduction from Hir-
TINGSET to SUBGRAPHEXTRACTION, with S; = {uj,uz}. In
the instance of SUBGRAPHEXTRACTION , we would have P; =
{(n,u1, B), (n,uz, f)} (marked in red).

Note that any feasible solution H to the HITTINSET problem, can
be translated to a feasible solution Q = Uycg{(n,u, f)} since H in-
tersects with Sj, Q contains at least one path from Pj. Note that the
size of |Q| = 2|H| as our paths contain exactly two edges. Similarly,
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any feasible solution Q of SUBGRAPHEXTRACTION can be translated
to a feasible solution H = Uy, g)cp{u} since Q contains a path
from each Pj, so H contains at least one element from S;. This
argument shows that any approximation of the SUBGRAPHEXTRAC-
TION problem translates to a solution with the same approximation
for the HITTINGSET . ]

COROLLARY 3. SUBGRAPHEXTRACTION is NP-hard.

3.2 The Common Spanning Subgraph Problem

In this section, we consider a special case of the problem where (i)
all pairs of vertices are POl pairs, i.e., I = (‘2/), (ii) for each constraint
Jj, we have an input feasibility graph G; = (V, E;) where any path
in this graph is a feasible path. We assume that all these graphs are
connected so P;; # @ for any POI pair i and constraint j. In this
special case, we are looking for a small subgraph that induces a
spanning subgraph in each feasibility graph. We henceforth call this
special case the COMMONSPANNINGSUBGRAPH problem. We restate
the definition of SUBGRAPHEXTRACTION for this special case:

DEFINITION 4 (COMMONSPANNINGSUBGRAPH PROBLEM). Given a
graph G = (V, E), and connected constraint graphs Gj = (V,Ej), the
objective is to find a subset of edges Q C E with minimum size such
that Q yields a connected graph for each constraint, i.e., all pairs are
connected:

Q = argmin{|X| : X N E; is connected for each j € [k]}.
XCE

We first demonstrate that even this special case of the problem
is NP-hard. We then propose a greedy algorithm that achieves an
O(log nlog k)-approximation, where n is the number of vertices,
and k is the number of different constraints (feasibility graphs). All
the missing proofs are deferred to Appendix A.

LEMMA 5. The COMMONSPANNINGSUBGRAPH problem is NP-hard.

In the remainder of this section, we focus on the CONNECTIV-
ITYGREEDY algorithm and its analysis. The high-level idea is to
iteratively select an edge that merges the largest number of con-
nected components over different feasibility graphs. More formally,
we start with an empty set of edges, Q. In each iteration, Q N E;
induces a subgraph of the feasibility graph G; with some connected
components. For each edge e, we compute a score that is the number
of constraints for which the addition of e connects different con-
nected components. We augment Q with the edge with the highest
score. The algorithm stops when Q induces a connected subgraph
for all constraints. More formally, our algorithm is as follows and a
sample run is depicted in Figure 2

THEOREM 6. CONNECTIVITYGREEDY is a O(log nlog k )-approximation

algorithm for the COMMONSPANNINGSUBGRAPH problem.

To prove this theorem, we use an argument based on a novel
charging scheme. We define a function q; for each constraint j
which charges the cost of our solution, |Q|, to unique cuts (subsets
of vertices). More formally, we define an auxiliary function g; :
2Y — Ry for each constraint j following the execution of the
algorithm. We start by setting all ¢;(S) = 0 for all j and all cuts S.
In iteration t, let edge e = (u, v) be the selected edge with score se.

So there are exactly s, constraints where e connects two connected
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Algorithm 1: CONNECTIVITYGREEDY

1 Initialize C « [k],Q «— 0
2 For each e € E, initialize Fe « {i: e € E;} and se <« |Fe]|

3 while C is not empty do

4 e = argmax,cf Se

5 Qe Quie}

6 forie Cdo

7 for e = (u,0) € E; do

8 if u, v are connected in Q then
9 Se ¢« Se — 1

10 if Q N E; spans G then

Ce«C\i

11

12 return Q

Gi
Progress of Algorithm 1

OJOXOROR00200X050,
OJOLONORORCROL0M0R0

Figure 2: An example showing the execution of Algorithm 1
on input graphs Gi, G2, G3. We break the ties by comparing
the lexicographic ordering of the edge endpoints. In each
iteration, the orange edge is selected. The algorithm first
picks the edge (a,d) as it has a score of 3 (it is present in all
feasibility graphs and connects two previously not connected
vertices). In the third iteration, the algorithm picks the edge
(c,d) with score 2. Note that the edge (b, d) has score 1 in the
third iteration since b and d are already connected in G; at
this point.

Input:

)

Gy

components. For each such feasible constraint j, let S}‘ and S;.’
be the two distinct components containing u and v. We set the
q;j(S) = 1/se where S is the smaller connected component between
S}f and S;.’ (see Figure 3 for an illustration of this scheme). Our
charging scheme in fact satisfies the following.

LeMMA 7. 35 q;(S) =10l

Proor. We first show that each function q; is well-defined. Note
that after adding e in iteration ¢, the two newly connected compo-
nents for constraint j, can no longer take a non-zero value by the
function g; so there is at most one chance of getting a non-zero
value by the function g; for any cut S. Additionally, for selected
edge e with score s, exactly s, sets take value 1/s, (for different s,
auxiliary functions) which sums up to 1. So the overall sum over
all functions and sets is equal to |Q|. O
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Figure 3: An example showing how function g; assigns values.

At this point, the algorithm has selected 2 edges and has

picked the orange edge which has the highest score (s, = 2).

The connected components for each constraint are shown in
dashed lines. For both constraints, the connected components
are {a,b,d} and {c} and the smaller components gets value of

1/se = 1/2,i.e., g1({c}) = q2({c}) = 1/2.

Now that we established our charging scheme which exactly
distributes the value |Q| among different unique sets over different
auxiliary functions, we need to connect this scheme to the cost of
the optimal solution. To this end, we rely on the greedy logic that,
in each step, among all the edges in the boundary of connected
components, picks the edge with the most presence. For each edge,
we upper-bound the contribution of all auxiliary functions for all
the cuts that have this edge in their boundary.

LEMMA 8. Zj,_g:(gj(s)ae qj(S) = O(lognlogk) where n is the
number of vertices and k is the number of constraints.

Proor. For this proof, we rely on the following claim, the proof
of which we defer to Appendix A.

CramM 9. Given any edge e = (u,v) € UEj, let j be the a-th
constraint with respect to which u,v become connected (break ties
arbitrarily). For all the cut S € V such that e € §;(S),

T @y

By the above claim, we establish an individual bound in terms
of the g-value for cuts for each constraint j. Now, we bound the
number of positive g-values for each constraint j for some edge
e = (u,v). Note that the connected components around u and v
grow as the algorithm adds edges and edge e is in the boundary of
all these connected components until they are merged. Now for a
set S in round ¢ that has e in its boundary, if ¢;(S) is non-zero, then
the size of the next connected component containing S is at least
twice the size of S (since S gets merged with a bigger set). Since
this size doubles every time, there are at most log n such sets for
each constraint and fixed edge e. Combining this with Claim 9, we

obtain:
Z gs:(s) = Z Z%i(s)

J,5:6:(S)3e Jjelk] S
1
< Z logn - ——
s Je=(a=1)

=O(logn - logk).
where the last inequality follows by the bound on the harmonic
series, i.e., Zle 1/i = O(logk). O

We are now ready to prove the main theorem of the section
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PrROOF FOR THEOREM 6. Consider the size of the greedy solution
|Q|, by Lemma 7, we have:

10l = Z Z%(s))

jelkl' s

DI

€€OPT j,5:5,(S) e

< > O(lognlnk)
e€0PT
= |OPT|O(log nInk). O

45,(8)) (since OPT spans G w.r.t any j)

(by Lemma 8)

Below we provide the the running-time analysis of CONNECTIV-
ITYGREEDY .

LEmMA 10. The running-time of CONNECTIVITYGREEDY is
O(min(kn, m)mka(n)), where a(n) is the inverse Ackermann func-
tion.

3.3 The Subgraph Extraction Problem

We now consider the general path selection problem where we are
given P;; for each POI pair i € I and each constraint j € [k]. The
objective is to output a small subgraph that includes at least one
path from each of the P;; set. To this end, we argue that our problem
can be thought of as an instantiation of the minimum submodular
cover with submodular cost problem.

DEFINITION 11 (MINIMUM SUBMODULAR COVER WITH SUBMODU-
LAR CosT PROBLEM [19]). Consider a polymatroid function f and a
finite set U, a set X C U is said to be a submodular cover of (U, f) if
f(X) = f(U). Given two submodular functions f, g, the minimum
submodular cover with submodular cost problem is to find subset X
such that

min{g(X) : f(X) = f(U),X € U}.
We first define a set function f : 2¥ — R as follows:
FX) =Py PijnX # 0},

in other words, f counts how many of the P;; set are “hit” by a set
of path X C P.

LEmMA 12. f is a polymatroid function.

Proor. First, note that f(0) = 0. Consider any two path sets X
and Y such that X ¢ Y C P, and let P(X) = P;j : P;; N X # 0 and
P(Y) = P;j : P;jNY # 0. We first observe that P(X) C P(Y). Now,
consider any path p € £ \ Y. Let A,(Y) be the number of extra
pij hit by Y U p compared to P(Y). Since P(X) C P(Y), we have
Ap(X) = Ap(Y). Note that Ay (Y) = Ap f(Y) by the definition of f.
Therefore, we have:

FXU{ph) - f(X) = fF(YU{p}) - f(Y),

which makes f a submodular function. Additionally, since including
more paths in Q always weakly increases the number of P;; hit by
O, f is an increasing function. Since the function f is submodular,
increasing, and f(0) = 0, f is, therefore, a polymatroid function. O

Recall that for a set X of paths, we use E(X) to denote the edges.
Let function g on subset of paths P be defined as g(X) = |E(X)]|.
It is easy to see that this g is submodualar. Note that since our
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objective is to minimize the size of the subgraph while hitting all
of P;j sets, we can write our problem as follows:

min{g(Q) : f(Q) = f(¥).Q € P}
By Definition 11, our problem is a special case of the minimum
submodular cover with submodular cost problem. We tailor the
greedy algorithm for this problem to our problem (see Algorithm 2)
and then can use the following result to get the approximation of
the greedy algorithm.

THEOREM 13 ([19]). Greedy algorithm is a pH(y)-approximation
algorithm for minimum submodular cover with submodular cost
problems with submodular functions f,g where y = maxyey f(x)
and p is the curvature of the submodular cost g formally defined as:

2xes 9(x)

S:min-cost cover g(S) '

p=

Algorithm 2: GENERALGREEDY

1 Q« 0
2 while Jp € P such that Apf(Q) > 0 do
Apf(Q)

9(p)

3 p = argmax

1+ Q< Qu{ph

5 return Q

In our setting, since each path p only serves one POI pair, we have
y = maxpep f(p) is bounded by k. Combining with the analysis in
[19], we get the following approximation guarantee of GENERAL-
GREEDY .

COROLLARY 14. GENERALGREEDY is a pH (k)-approximation algo-
rithm for the SUBGRAPHEXTRACTION problem, where

o= min Ypeort(P) 9(P)
oPT(P)  g(OPT(P))

One can interpret the p as the level of “double counting” of edges
in the optimal solution. The more edges shared among the paths in
the optimal solution, the higher the p.

For completeness we include the running-time analysis of GEN-
ERALGREEDY below.

LEMMA 15. The running-time of GENERALGREEDY is o(k|P)?).

Proor. First, note that, similar to Algorithm 1, if Q includes
all p € P, then the while loop will terminate, and the number of
iterations of the while loop is therefore bounded by |P|. Given
Q, the time needed to compute f(Q) is O(|I|k). Since each p only
serves one point of interest (poi), computing A, f(Q) takes O(k),
and there are at most |#| such computations. Since |P| > |I|, we
therefore have that each iteration takes O(k|#|), making the total
running time O(k|P|?). O

4 EXPERIMENTS

In this section, we evaluate variants of our algorithm experimentally.
Given that our work is the first to consider explicitly optimizing
the subgraph for given objectives, the only baselines that we can
compare against from prior work are the alternate route subgraph
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Figure 4: The performance of GENERALGREEDY vs the optimal
solution and the penalty method baseline (with 10 alternates per
origin-destination pair) in randomly generated instances
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Figure 5: The performance of GENERALGREEDY vs the optimal
solution and the penalty method baseline (with 10 alternates per
origin-destination pair) in actual instances

generation algorithms that are oblivious to the objectives. We report
the results against the penalty method [12], which is known to be a
high-quality solution for the alternate route subgraph generation
problem.

4.1 Road Network and Cost Functions

We evaluate our algorithms on two real-world road networks, specif-
ically, the road networks of New York City and Tokyo. We extract
the graphs for these cities from OpenStreetMap [14]. In each one of
the cities, we select 8 random points of interest that are the termi-
nals that we wish to connect, yielding, in turn, 64 origin-destination
pairs in I. In a real application, these could represent central hubs
or the places that a particular user frequently visits.

Our feasible path sets P;; are defined through four cost functions,
for which we wish to maintain near-optimal paths. These functions
are the following:

o The travel time. We extract the travel time of a road seg-

ment by dividing the length by the speed limit as given in
OpenStreetMap.
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o The length, i.e., the total distance driven on the path.

o A rate-card type cost, i.e., a combination of the travel time
and the distance traveled.

o Avoid highways. Here the base cost is the travel time and a
penalty (we use the value of 100 seconds per highway road
segment for our experiments) is added for each highway seg-
ment in the route. In the OpenStreetMap data, we consider
any segment with 3 or more lanes to be a highway.

e Avoid narrow roads. Again the base cost is the travel time,
but here a penalty (again we use the value of 100 seconds
per narrow road segment for our experiments) is added for
narrow roads, which we define as those having a single lane.

We aim to select a subset of the edges with cardinality as small as
possible that contains approximately optimal paths for every pair
of terminals and every cost function. The “approximate optimality”
(for a single trip and cost function) here is defined in two ways, one
in each of the following two sections. In the first one (the satisfactory
routes variant of the experiment), we put a path in P;; if and only if
the path is in the top four paths between the endpoints of i for cost
function j. The second variant of the experiment (the accuracy vs
graph size variant) measures approximate optimality using the cost
functions themselves by means of the accuracy metric:

DEFINITION 16 (ACCURACY). We say the accuracy of trip p € P;
with respect to some cost function ¢/ is

mingegp, ¢/ (£)
cJ(p)

We note that 0 < o/ (p) < 1. We define the metric for the entire
subgraph as the minimum of the maximum accuracy of any cost
functions and POI pairs. In other words, the accuracy of a subgraph
is the minimum accuracy of the best trip included for each cost
function with respect to each POI pair. Formally:

a (p) =

DEFINITION 17 (ACCURACY-LEVEL). Given a subset of edges Q, we
say the accuracy level of the subset is
min max a’ (p)
i,j peQ
The trade-off of interest is then the one between the size of the
subgraph in terms of the number of edges and its accuracy level.

4.2 Satisfactory Routes Variant

In the first round of experiments, we evaluate the algorithm pro-
posed in Section 3. For each origin, destination, and cost function
triplet, some of the routes are designated as satisfactory and the sub-
graph needs to include at least one such path per triplet. In general
applications the designation can be done in any way, e.g., request-
ing that the path is among the top k paths for the cost function
under consideration, or that the path satisfies some approximate
optimality threshold. For our experiment, we deem a path as satis-
factory if it falls within the top four routes among the ones for the
corresponding POI pair and cost function. Then we request that the
subgraph includes at least one of the top four paths for every origin,
destination, and cost function, and seek to minimize the number of
included edges.

We first test GENERALGREEDY on synthetic instances. To generate
multiple instances, we use synthetic cost functions (noting that
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Figure 6: more refined accuracy size trade-off for New York

each city represents a single instance for natural cost functions).
We randomly label some of the paths as satisfactory for each of the
cost functions, with specifically four paths labeled as such for each
origin, destination, and cost function triplet.

In Figure 4, we present the performance of GENERALGREEDY over
the random instances. We also plot the optimal solution, extracted
using a (very slow and non-practical) linear programming-based
algorithm, alongside the penalty method baseline that extracts 10
alternates for each origin-destination pair. It is worth noting that
the performance of GENERALGREEDY exceeds the theoretical guar-
antees. On average, the solution output by GENERALGREEDY is only
1.12 times the size of the optimal graph. Additionally, as observed,
by keeping, on average, only 65% of the initial subgraph, we can
ensure that for any source, destination, and cost functions, at least
one satisfactory trip is included.

We also test GENERALGREEDY on real-world instances with actual
cost functions discussed in Section 4.1. Similar to the synthetic
instances, we consider a path satisfactory if it ranks among the
top four routes for the same pair of points of interest (POI) with
respect to the corresponding cost functions. We then require that
the subgraph includes at least one of the top four paths for every
origin, destination, and cost function while seeking to minimize
the number of included edges.

In Figure 5, we present the performance of GENERALGREEDY for
New York and Tokyo. For New York, where the subgraph size of the
penalty method alternates baseline is 8, 699, the subgraph output by
GENERALGREEDY contains 3, 364 edges, while the optimal subgraph
has a size of 2, 788. For Tokyo, the baseline graph contains 27, 207
edges, the GENERALGREEDY subgraph has 8, 583 edges, while the
optimal subgraph contains 6, 661 edges. We note that the full graph
sizes for the two cities are in the hundreds of thousands. We observe
that our algorithm recovers most of the headroom towards the
optimal solutions.

4.3 Accuracy vs Graph Size Variant

Now we turn to a variant of the experiment that we deem as more
practically relevant: Suppose we are given a budget on the size of
the subgraph and we would like to ensure approximate optimality
of the included paths as much as possible. In this regard, we can
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keep adding edges or paths to our subgraph until we have reached
the available budget. It is then interesting to plot what the different
algorithms can achieve in terms of route quality as a function of
the size of the subgraph that they are allowed to construct. We will
again compare the performance of our greedy algorithm (after we
slightly modify it to fit the new setting) against the penalty method
alternates baseline. To extract the tradeoff for the baseline, we let
the number of alternates extracted per origin-destination pair vary.
As we will see, the penalty method requires around 10 alternates
to perform well, which is also the reason why 10 was selected as
the de facto value in the previous section’s experiment.

Note that the GENERALGREEDY algorithm terminates once it has
included at least one feasible trip for each cost function j with
respect to each POI pair i. To fully utilize the concept of accuracy
and provide more possible trade-off options, we modify GENER-
ALGREEDY as follows: we again start with an empty set Q. At any
point, the algorithm maintains an accuracy table that keeps track
of the best accuracy for each cost function in each POI pair. In
each iteration, the algorithm identifies the POI pair i that currently
has the minimum accuracy in the accuracy table and selects a trip
p € P;, maximizing the difference between the minimum accuracy
of the POI before and after adding p. We continue this process until
we exceed the budget for the included edges. The pseudocode of
the modified algorithm, called MODIFIEDGREEDY, is provided in
Algorithm 3.

Algorithm 3: MODIFIEDGREEDY

1 Input: edge budget B

2 Initialize: Q « 0;

3 while | Upep e(p)| < Bdo

4 Compute the accuracy table A(Q)

5 aj j* «— argminA;
Lj
6 p « argmaxmin(A(Q U p)[i :]) — min(A(Q)[i :])
pEP;
7 QeQUp
8 return Q
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Figures 6 and 7 plot the performance of our algorithm and the
penalty method baseline against the size of the subgraph. We ob-
serve that our algorithm achieves full accuracy using considerably
fewer road segments. For both New York and Tokyo, the experi-
ments suggest that our method reaches maximum accuracy using
only about half of the road segments that the baseline uses. In fact,
we can see that in order to get any positive accuracy (let alone
one that approaches 1), the baseline must already use a lot more
edges than our algorithm needs to converge to full accuracy. This
considerable discrepancy highlights the efficiency of our procedure.

5 CONCLUSION

In this work, our focus lies in designing algorithms for the effi-
cient extraction of subgraphs that not only minimize size but also
incorporate near-optimal routes for a predefined set of cost func-
tions. Initially, we established the NP-hardness of the subgraph
extraction problem by demonstrating its equivalence to the hitting
set problem. Subsequently, we introduced a logarithmic approxi-
mation algorithm tailored for cases where edge costs are limited
to binary values. We then applied a minimum submodular cover
with submodular costs algorithm, achieving an approximation that
scales logarithmically with the number of constraints induced by
the cost functions. Our empirical evaluation on real road networks
confirmed the strong performance of our algorithms, surpassing
the worst-case guarantees and demonstrating their practical appli-
cability.

Furthermore, to enhance the practicality of our proposed solu-
tions, we modified the algorithm to provide a more refined trade-off
between the subgraph size and the minimum accuracy for any cost
function. Once again, we demonstrated that our approach signifi-
cantly surpasses the existing baseline by achieving an optimal or
near-optimal accuracy level using a substantially smaller subgraph.

Overall, We initialize the study on subgraph extraction in facil-
itating efficient and adaptable navigation systems that can cater
to a diverse range of user preferences and constraints, thereby
enhancing the customizability of online navigation platforms.
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A MISSING PROOFS FROM SECTION 3.2

LEMMA 5. The COMMONSPANNINGSUBGRAPH problem is NP-hard.

ProoF. It is known that the Hitting set problem is NP-hard. We
now propose the following reduction from HITTINGSET to Com-
MONSPANNINGTREE as follows: consider an instance of the hitting
set problem, with {S1, Sa, .. ., Sm} and a number b. We construct an
instance in our problem as follows:

o LetgraphG=(V=UU{npLE={(v,w):ve{nf}we
U}).
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o Define m constraints where E; = {(w,n) :a € S;} U {(a, f) :
a € U;S;} for all i. In other words, E; contains (w, f3) for all
w and (w, n7) only for w € S;.

Assume for contradiction, that there exist an polynomial time algo-
rithm that can find the subset of edges Q with the smallest carnality,
such that Q € E; spans the all vertices for all E;. First note that
we can wlog assume Q contains all the edges (a, §)!. We now ar-
gue that H = {w : (w,n) € Q} is the optimal solution for the
HITTINGSET problem. Assume for contradiction that there exist a
better solution H” such that H' N S; # 0, and |H’| < |H|. Note that
the set Q' = {(w,n) : w € H'} U {(w, ) : Yw} is a valid solution
the CoMmMONSPANNINGTREE problem, since for each E;, all of the
vertices w is connected to § and at lest one w is connected to 5
by definition that H’ is a solution of the HITTINGSET problem and
the construction of Q’, contradicting with the assumption that Q
is optimal. H is therefore the optimal solution for the HITTINGSET
problem. Since the HITTINGSET problem is known to be NP-hard,
we therefore conclude the ComMONSPANNINGTREE problem is also
NP-hard.

To show that the CoMMONSPANNINGTREE is also in NP, we can
have the certificate be the proposed subset of edges Q and we can
simply check if Q N E; connects all the vertices for all i, which is
doable in polynomial time. We therefore conclude that the Com-
MONSPANNINGTREE problem is NP-complete. O

CLaM 9. Given any edge e = (u,0) € UEj, let j be the a-th
constraint with respect to which u,v become connected (break ties
arbitrarily). For all the cut S € V such that e € §;(S),

q;(S) <

fe-(a=1)
Proor. We first make the following observation based on the

greedy nature of our algorithm.

OBSERVATION 18. Consider an edge e = (u,v) € UEj, suppose
at some point of the execution, u,v is connected with respect to £
number of feasible constraints, then the next edge chosen by the
greedy algorithm has a score at least:

Je=t¢

where fo = |Fe| is the number of Ej that include e.

1)

ProoF. By definition of s., we have at this point s, = fo — ?.
Indeed, choosing the edge e would attain the ratio in (1); the ratio
of the edge chosen by the greedy algorithm can only be weakly
bigger. O

Lemma follows immediately from the above observation in the
case where the (u,v) is connected in each feasible constraint one-
by-one (with a — 1 replacing ¢ for each a). In general, u, v might be
connected in multiple feasible constraints at the same time (e.g., the
greedy algorithm might actually pick e). In this case, the number of
feasible constraints with respect to which u, v is already connected
is weakly less than a — 1, making g5, (s5) even smaller. O

Lif there exist an edge (w’, f8) that are not included in Q, then by connectivity we
have (w’, n7) has to be in Q and we can always remove (w’, 57) and add back (w’, )
without losing connectivity and this process weakly decreases the number of edges in

Q
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LEMMA 10. The running-time of CONNECTIVITYGREEDY is
O(min(kn, m)mka(n)), where a(n) is the inverse Ackermann func-
tion.

Proor. First, note that the number of iterations of the while loop
is at most O(min(kn, m) times since each constraint is satisfied as
soon as a spanning tree is added for that constraint so at most
k(n — 1) edges can be added for each constraint. Also at most m
edges can be added, i.e., all the edges. Then the outer loop can run
for O(min(kn, m) . Finding the edge e with the smallest s, takes
O(m) time. Now for the score update portion, we basically need
to maintain the connected components for each constraint. This
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can be done using the disjoint-set data structure which supports
addition, union, or find operations with ta(n) time. We need to
update the score of each edge for each constraint if its endpoints are
merged, i.e., until they are in the same connected component for the
current constraint and they do not have the same label as before. To
support this operation in addition to the disjoint-set data structure,
for each connectivity constraint, we keep the last time the label for
the connected component was updated. With the disjoint-set data
structure, checking whether Q spans G for connectivity constraint
i is trivial (O(1)). So, overall, for the operations inside the loop we
have O(m + mka(n) + 1) = O(mka(n)) o
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